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Abstract

This paper explores how residential mortgage contracts distribute flood risk exposures
across banks, households, and the government flood insurer. I merge newly digitized
federal flood maps with geo-located mortgage data to obtain loan-level classifications
of flood risk. Strict flood insurance coverage limits and staggered flood map updates
provide plausibly exogenous variation in flood risk exposures and assessments. I find
that banks manage flood risk by rationing credit through lower loan-to-value (LTV)
ratios, which reduces negative borrower equity after floods. However, banks only adjust
LTVs when flood insurance coverage limits bind, showing that they offload flood risk
to the government flood insurer. Increased credit rationing after flood map updates
shifts the composition of mortgages towards richer and higher credit quality borrowers.
I conclude that lenders screen for flood risk when they retain residual exposures to it,
and that their credit rationing has distributional consequences for who moves into flood
zones.
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1 Introduction

In the United States, 35.8 million homes with a combined market value of $6.6 trillion are
exposed to natural disaster risk (RealtyTrac, 2015). Floods are the most costly natural
disasters, having caused hundreds of billions of dollars in damage over the past few decades
(Newburger, 2021). These costs are expected to rise further, with climate change bringing
rising sea levels, heavier rains, and stronger hurricanes (Davenport et al., 2021). By some
estimates, flood-related property damage could increase by more than 60% over the next
30 years due to climate change (Duguid, 2021). Given the large scale of potential financial
losses, it is important to know who bears flood risk in mortgage markets.

Financial regulators worry that banks may neglect or offload flood risk to the government,
possibly threatening financial stability.1 Mortgage lenders originate more than $200 billion
annually in flood zones, representing roughly 10% of total bank equity (Ouazad, 2020). Bank
regulators in Canada, France and the United Kingdom are already conducting climate-related
stress tests, and the U.S. Federal Reserve is considering a similar approach (Brainard, 2021).
Despite recent policy actions, there is limited empirical evidence related to how lenders
adjust mortgage terms to manage flood risk, which affects how these risks are distributed in
the U.S. economy.

In the market for flood risk, there are three primary players: households, mortgage
lenders, and the government. Households bear flood risk because flood damage can directly
affect home values. Lenders bear flood risk because households purchase their homes using
mortgages. The mortgage’s loan-to-value ratio at origination is a key determinant of how this
risk is shared between them. Households and banks may transfer flood risk to the govern-
ment through the publicly-run National Flood Insurance Program (NFIP). Flood insurance
payments can be used to repair damaged homes, changing household default incentives and
lender risk exposures. Flood insurance is required by law for most mortgage borrowers in
flood zones, and these contracts have strict coverage limits, meaning that not all flood risk
can be transferred to the NFIP.2

1Fed Governor Lael Brainard says in her December 18, 2020 speech: “It is vitally important to strengthen
the U.S. financial system to meet the challenge of climate change... We are already seeing elevated financial
losses associated with an increased frequency and intensity of extreme weather events... Mortgages in coastal
areas are vulnerable to hurricanes and sea level rise... Recent research argues that lenders hit by hurricanes,
particularly in areas not typically affected by natural disasters, tend subsequently to securitize more of their
mortgage loans, which could have higher climate risks, higher borrower defaults, and lower collateral values.”
(Brainard, 2020)

2Ouazad and Kahn (2021) show that the ability to securitize mortgages plays less of a role in federal
flood zones where flood insurance is required. Most of the increase in securitization following hurricanes
occurs in areas outside of federal flood zones, suggesting lenders rely on securitization as a substitute for
flood insurance.
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This paper studies how flood risk exposures are distributed across banks, households,
and the government flood insurer through residential mortgage contracts in Florida. There
are three key findings. First, lenders account for flood risk in the mortgage contract, the
primary margin of adjustment being down payments rather than interest rates. This is
consistent with lenders rationing credit to decrease the likelihood of negative equity, as
higher down payments improve lender recovery rates. On average, banks reduce loan-to-
value ratios by 85 basis points (0.85 percentage points) in flood zones, while interest rates do
not significantly change. Second, lenders only ration credit when they retain direct exposure
to flood risk; there is no evidence of rationing when risks are fully covered by government
flood insurance. These loan-to-value adjustments appear to be effective, with delinquency
rates being roughly equal for both fully insured and under-insured homes in and out of
flood zones. Third, lender credit rationing has distributional consequences and shifts the
composition of borrowers to richer, higher credit quality individuals. Higher down payments
and flood insurance requirements seem to deter more liquidity-constrained borrowers from
purchasing homes in flood zones.

Estimating the impact of flood risk on mortgage markets and household location choices
is challenging for two reasons. First, obtaining data on flood risk is difficult. Flood maps
produced by the Federal Emergency Management Authority (FEMA) are the most widely
used measures of flood risk (Kousky et al., 2018). Although current flood maps are available
digitally as a database from FEMA, historical flood maps are not, making it difficult to
identify a mortgage’s flood zone classification at origination. I address this issue by digitizing
historical flood maps that were previously unavailable. I then combine the current and
historical flood maps with a novel dataset that geo-locates individual mortgages and thereby
obtain the property’s flood zone classification at origination. This creates both cross-sectional
and time-series variation in flood risk classifications.

The second challenge is that flood zone status may be correlated with unobserved location-
specific characteristics. For example, if homes in flood zones are disproportionately likely
to have water views that attract wealthier borrowers, then differences in loan characteristics
may reflect the tendency of wealthier individuals to have lower LTVs rather than lender risk
management. I use three empirical strategies to address this concern. First, I control directly
for borrower incomes and FICO credit scores at origination. Second, strict coverage limits
of flood insurance contracts create plausibly exogenous variation by changing banks’ resid-
ual flood risk exposure within flood zones. Third, periodic flood map updates change risk
assessments while keeping underlying amenities fixed. The results of these alternate spec-
ifications confirm that unobserved amenities only partly explain the observed correlation
between flood zone status and loan-to-value ratios, the rest being driven by lender rationing.
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I begin the paper with descriptive evidence that suggests lender credit rationing in flood
zones. I find that loan-to-value ratios are on average 85 basis points lower in flood zones, even
after including zip code-year fixed effects and controlling for the borrower’s income, FICO
credit score, and property value. With the same set of fixed effects and controls, interest
rates are only 1 basis point higher in flood zones, whereas delinquency rates are roughly equal
in and out of flood zones. Lower loan-to-value ratios without lower interest rates suggests
lender credit rationing rather than selected borrowers in flood zones. Borrowers who choose
higher down payments usually do so to obtain an interest rate advantage, which would lead
mortgages in flood zones to have lower interest rates than mortgages outside of flood zones.

The effect of flood insurance coverage limits on loan-to-value ratios also supports a supply-
side interpretation. Flood insurance is required by law for most mortgage borrowers in flood
zones, and government flood insurance has a 95%market share. This insurance only covers up
to $250,000 in flood damage, and there is limited availability of private top-up insurance for
borrowers in high risk flood zones. As a result, smaller homes are fully insurable, and larger
homes in flood zones are under-insured. This feature of flood insurance allows comparisons
of mortgage contracts by flood zone status and by whether the insurance cap binds. I find
that flood zone status has no effect on loan-to-value ratios when the loan can be completely
insured, that loan-to-value ratios are lower in flood zones when the coverage limit binds,
and that the relationship between flood zone status and loan-to-value ratios changes around
the insurance coverage limit. Furthermore, loan-to-value ratios are reduced more in flood
zones when a greater share of the home is un-insurable. For homes in flood zones, a 1
percent increase in the share of the home that is uninsured leads to a 0.5 percent decline
in loan-to-value ratios. Delinquency rates are roughly equal in and out of flood zones for
each replacement cost category, which suggests that lender loan-to-value ratio adjustments
are effective. The results show that banks screen on flood risk when they are sufficiently
incentivized to do so.

Staggered difference-in-differences estimates from flood map updates confirm that the
cross-sectional results are driven by lender credit rationing rather than unobserved ameni-
ties. Updating a community’s flood map often requires an engineering study that produces
new data on elevation and the location of dams and levees. FEMA partners with local com-
munities to conduct these studies, and it can take up to five years to release an updated flood
map.3 All zip codes in a county receive updated flood maps at the same time, although some
zip codes have expanded boundaries while others have unchanged or contracted boundaries.
Importantly, these updated flood maps change flood risk assessments while holding fixed

3Private sector measures of flood risk, such as those from CoreLogic, use the FEMA data and flood maps
as an input.
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unobserved location-specific characteristics. I find that banks dynamically respond to the
flood zone expansions by reducing loan-to-value ratios. Average interest rates are higher,
and delinquency rates decline, though neither result is statistically significant. The results
are not likely to be driven by unobserved county-year shocks since mortgage terms do not
change for zip codes with map updates that leave flood zone boundaries unchanged.

Furthermore, the composition of mortgage borrowers changes after the flood zone expan-
sions. I find that average mortgagor incomes increase by 10% in the years following a flood
zone expansion, and average credit scores increase by over 5 points. Transacted properties
themselves are more than 100 square feet larger after the remapping. The combination of
lower loan-to-value ratios and unchanged interest rates suggests that the change in composi-
tion towards richer, higher credit quality individuals buying larger homes is driven by higher
down payment requirements deterring liquidity constrained borrowers.

Taken together, these results show that banks internalize flood risk when they have direct
exposures to it, and this credit rationing has strong distributional consequences for who can
purchase homes in flood zones. However, this risk is offloaded to the government through
flood insurance contracts for homes that can be fully covered. In the absence of mandatory
government flood insurance, lenders would likely ration credit for all borrowers in flood zones.

Related Literature: This paper lies at the intersection of household and climate fi-
nance, and makes a number of contributions to the existing literature.

The literature shows that floods create financial losses for lenders, implying that lenders
should adjust mortgage terms to manage this risk. Hurricanes increase household delin-
quency and insolvency, and these rates rise with property damage (Bleemer and van der
Klaauw, 2019; Kousky et al., 2020). Insurance payouts offset some of the rise in delinquen-
cies after disasters (Billings et al., 2019; Issler et al., 2019; Kousky et al., 2020). A handful
of papers have explored whether lenders screen for flood risk by exploring the effects of nat-
ural disasters on mortgage pricing. After hurricanes, lenders change where they originate
mortgages (Cortés and Strahan, 2017; Gropp et al., 2019), using geographic diversification
to manage their exposures. Ouazad and Kahn (2021) find that lenders are more likely to
securitize loans in areas hit by hurricanes that lie outside of federal flood zones, which are
areas where flood insurance is not required by law for mortgage borrowers. They suggest
that lenders rely on securitization as a substitute for flood insurance. However, there is is
limited evidence that lenders adjust interest rates or loan-to-value ratios (Garbarino and
Guin, 2021).

While these papers have explored the causal effect of realized natural disasters on mort-
gage originations, I consider new sources of variation in ex-ante flood risk from updated flood
maps and insurance coverage limits. This approach has two main advantages. First, large
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natural disasters often directly affect municipalities, firms, banks, and households financially
in addition to changing assessments of risk (Nordhaus, 2010; Deryugina, 2017; Boustan
et al., 2020). Second, it is difficult to ascertain how much risk assessments should change
in response to the experience of a natural disaster. Variation from insurance contracts and
updated maps allow for directly measuring the independent effect of risk exposure and risk
assessments on mortgage terms. Using these sources of variation, I show that banks manage
flood risk by adjusting loan-to-value ratios.4

The large literature on household default and negative equity explains why lenders adjust
loan-to-value ratios to manage risk. The literature describes default behavior using either a
pure “strategic default” model where default is entirely triggered by negative equity (Foster
and Van Order, 1984) or a “double-trigger” model where household default is triggered by
both negative equity and cash-flow shocks (Foote and Willen, 2018). Much of the literature
finds limited evidence of pure strategic default behavior.5 Importantly, in both the pure
strategic default and double-trigger models, negative equity is a necessary condition of de-
fault, since borrowers with positive equity are better off repaying loans using the proceeds
from selling the home and keeping any remaining balance.6 Loan-to-value ratios at orig-
ination affect the borrower’s equity position throughout the life of the loan and therefore
serve as a useful tool for managing collateral risk. Lenders also rely on loan-to-value ratio
adjustments to manage default risk in other secured lending markets, such as in corporate
lending markets (Benmelech et al., 2005; Benmelech and Bergman, 2009) and in derivatives
markets (Capponi et al., 2020).

There is also evidence that households with riskier collateral tend to prefer loans with
higher loan-to-value ratios (Lamont and Stein, 1999; Hertzberg et al., 2018; Bailey et al.,
2019), consistent with notions of adverse selection in Stiglitz andWeiss (1981) and Finkelstein
and Poterba (2014). My results imply that banks are aware of household preferences for
larger loans and respond by actively requiring riskier households in flood zones to take on
less leverage.

Lasly, this paper joins a large literature which shows that the ability to offload risk changes
lender screening incentives. Downing et al. (2009), Keys et al. (2010), Purnanandam (2011),
and Keys et al. (2012) find strong evidence that lenders securitize mortgages that are of

4Insurance availability is likely to grow in importance as private insurers exit other key natural disaster
markets (Garmaise and Moskowitz, 2009; Flavelle, 2019; Oh et al., 2021).

5See, for example, Scharlemann and Shore (2016); Bhutta et al. (2017); Fuster and Willen (2017); Gerardi
et al. (2018); Ganong and Noel (2020).

6Low (2018) and Ganong and Noel (2020) note that frictions in housing markets can make it difficult
to sell homes, explaining some observed defaults from borrowers with positive equity experiencing cash-flow
shocks.
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lower credit quality than the ones they retain on balance sheet. Campbell and Dietrich
(1983) and Park (2016) suggest that government and private mortgage insurance diminish
lender underwriting standards. I contribute to this literature by showing that government
flood insurance reduces lender incentives to ration credit in flood zones.

The remainder of the paper is organized as follows. Section 2 develops the key hypotheses
that will be tested. Section 3 describes the institutional setting. Section 4 describes the data
and presents the descriptive evidence. Section 5 shows the effect of flood insurance coverage
limits on bank risk management. Section 6 confirms the cross-sectional patterns using a
difference-in-differences design based on the staggered update of flood maps, and explores
the real effects of credit rationing in flood zones. Section 7 concludes.

2 Hypothesis Development

In this section, I consider a conceptual framework to derive two hypotheses of how banks
should manage their flood risk exposure which can be tested in the data. The stylized model
in Appendix C formalizes these intuitions.

The conceptual framework considers a borrower who has decided to purchase a home
and then applies to a bank for mortgage financing. In the two-period model, the mortgage
is originated in the first period and repaid in the second period. Between those two periods,
a flood can occur with some positive probability. A flood causes some property damage,
where property damage follows some probability distribution. After the flood, the household
can choose to repay the loan or default. The borrower incurs some loss of utility from
defaulting, reflecting the costs associated with financial distress. The probability of a flood,
the distribution of flood damage, and default costs are known to both the borrower and
the bank. Both the borrower and the bank are risk-neutral, but there are gains from trade
because the lender is assumed to be more patient than the borrower.

After a flood, the borrower decides whether to default or repay the loan. The borrower’s
default rule will compare the outstanding balance of the mortgage with the value of the
flooded property and the costs of default. If the property is worth less than what is owed
to the banks and the costs of default, the borrower optimally defaults. The default rule is
consistent with both the strategic default (Foster and Van Order, 1984) and double trigger
(Foote and Willen, 2018) models, since in both models negative equity is a necessary condi-
tion of default. Given their default rule, households will therefore maximize their expected
utility subject to a lender zero profit constraint.

Because delinquency depends on the borrower’s equity position, lenders adjust both loan
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sizes and interest rates to manage delinquency risk. A smaller loan size at origination will
imply that the borrower owes less to the bank after a flood, thereby giving the borrower a
lower incentive to default. However, a smaller loan size will also lead to reduced repayments
when households do not default. Loan sizes will trade off the effect of lower repayment and
lower default probabilities.

If delinquency rates did not depend on loan sizes, then lenders could increase interest
rates to manage flood risk. However, in this setting, a higher interest rate without a smaller
loan size increases the amount owed to the bank, thereby increasing delinquency risk. The
interest rate will be determined by the trade off between increased returns and increase
delinquency rates. Adjustment through both quantities and prices is a general result that
be shown in a broad class of models with moral hazard (e.g. Stiglitz and Weiss, 1981).7

This leads to the following hypotheses:

Hypothesis 1: Loan-to-value ratios are decreasing in flood risk exposure.

Hypothesis 2: Interest rates are not decreasing in flood risk exposure.

In the model, the magnitude of the loan-to-value and interest rate adjustments, as well as
the pass-through to delinquency rates, depend on parameters that determine the risk-return
relationship, such as the shape of the distribution of flood damages, lender and borrower
discount rates, and borrower default costs. Outside the model, the competitive structure of
lending markets also plays a role.

2.1 Testing the Hypotheses

I use three sources of variation in flood risk exposure to test these hypotheses. The first
approach uses a mortgage’s flood zone status under FEMA flood maps as a proxy for its
flood risk exposure. Hypothesis 1 and 2 thus imply that observably-equivalent homes in flood
zones should have lower loan-to-value ratios and similar or higher interest rates as homes
outside of flood zones. These results are presented in Section 4.

The second source of variation considers both flood zone status and insurance availability
to measure a lender’s residual exposure to flood risk. As formalized in Appendix C.2, a fully
insured mortgage is not exposed to flood risk because each dollar of flood damage is offset by
an insurance payment.8 Furthermore, mortgage borrowers are required to by flood insurance

7A positive relationship between delinquency and loan sizes is similar to moral hazard in health insurance
markets, where more insurance coverage causes more healthcare spending.

8This result relies on the assumption of frictionless insurance markets.
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in flood zones (see Section 3). As a result, only large under-insured homes in flood zones are
exposed to flood risk because the insurance coverage limit binds. Therefore, there should be
no difference in mortgage terms in and out of flood zones for observably-equivalent borrowers
that are fully insurable. Loan-to-value ratios and interest rates should only adjust in flood
zones when homes are under-insured and banks retain residual flood risk exposure. I therefore
test Hypothesis 1 and 2 by estimating the effect of flood zone status on loan-to-value ratios
and mortgage terms when homes are not fully insurable. These results are presented in
Section 5.

The third source of variation considers changes in flood risk assessments rather flood risk
exposures directly. I assume that changes in federal flood maps can be used to proxy changes
in risk assessments, even if fundamental flood risk itself does not change. Thus, expanded
flood zone boundaries suggest an increase in lender’s expectation of flood risk exposure.
Therefore, I test Hypothesis 1 and Hypothesis 2 by analyzing how loan-to-value ratios and
interest rates adjust following the release of new maps that expand flood zone boundaries
and bring heightened risk assessments. These results are presented in Section 6.

2.2 Demand-side Explanations

Importantly, both Hypothesis 1 and Hypothesis 2 are required to establish that lenders
manage flood risk. For example, Hypothesis 1 can also hold in a model of advantageous
selection where homes with more flood risk exposure tend to have less risky borrowers who
demand smaller loan-to-value ratios. This can occur if, for example, areas with more flood
risk are also areas with better waterfront amenities, and therefore attract unobservably
higher credit quality borrowers that choose mortgages with higher down payments. In this
scenario, Hypothesis 2 is not likely to hold because, all else equal, for a given loan-to-value
ratio, borrowers would be better off financially with a lower interest rate. If the correlation
between loan-to-value ratios and flood risk exposures were entirely driven by advantageous
selection, we would expect interest rates to also decrease in flood risk exposure, thus violating
Hypothesis 2.

I can address demand-side explanations more formally by exploiting variation in flood risk
that is plausibly exogenous to unobserved amenities. First, if I assume that the relationship
between unobserved amenities and replacement costs is the same in and out of flood zones,
then comparing mortgage terms by flood zone status and whether it can be fully insured
identifies the treatment effect of lender’s residual flood risk. This is the empirical strategy I
use in Section 5. Second, the release of an updated flood map changes flood risk assessments
without changing any other features of a location, thereby keeping unobserved amenities
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fixed. I can therefore compare mortgage terms in areas that receive updated maps before
and after the re-mappings, and use areas which are not remapped as a control group. This
is the empirical strategy I use in Section 6.

3 Institutional Setting

FEMA’s flood maps are the most widely used measures of flood risk (Kousky et al., 2018).
FEMA’s flood zone designations determine flood insurance premiums and have regulatory
consequences for mortgage borrowers and lenders. In this section, I provide more background
on FEMA’s flood maps, these regulatory requirements, and the flood insurance market.

3.1 Flood Maps

The National Flood Insurance Program (NFIP) was established in 1968 to provide insurance
that had been historically unavailable through the private sector. Flood risk is carved out
of standard homeowners insurance, and until very recently private flood insurance was rare
(Kousky et al., 2018). FEMA administers the flood insurance program and today, the NFIP
covers 95% of all residential flood insurance policies in the United States. To administer the
insurance program, FEMA produces flood maps that define its classification of flood risk,
with homes located in high risk flood zones facing higher flood insurance premiums.9

In 1970, Congress required FEMA to produce flood maps that delineate the boundaries
of high, moderate, and low risk flood zones. High risk flood zones are defined as areas which
have at least a 1% chance of flooding in a given year. These flood maps are extremely
data-intensive to produce. Creating a new flood map or updating an existing flood map
often requires a new engineering study, and can take as long as five years or more. These
flood maps have two key data requirements: base map information, and elevation data. Base
map information describes the location of streams, roads, buildings, dams, administrative
boundaries, etc. This information is widely available from a number of sources (such as
Google Earth or the U.S. Geological Survey). The second data requirement is information
on land and water surface elevation. Elevation data is then used as an input into hydrolog-
ical models that define the direction, velocity, and depth of flood flows (National Research
Council, 2007). These models require highly accurate elevation information that are reliable
up to one-tenth of one foot. FEMA supplements elevation data from the U.S. Geological

9In Florida, moving from a low or moderate risk to a high risk classification leads to a $400 increase in
annual premiums.
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Survey with data compiled by land surveys and by remote sensing techniques from aircraft
or satellites to meet its vertical accuracy standards (FEMA, 2019).

By law, FEMA is supposed to review its flood hazard engineering studies every five years
and decide whether to update or change the flood maps which rely on those studies. This
is because flood hazards and our measurement of flood risk both change over time. Water
flow and drainage patterns can change due to new land use and infrastructure development
or by natural forces such as changing weather, terrain changes, hurricanes, or wildfires. For
example, about 17,000 square miles of land in California, Texas, Louisiana, and Florida
sinks a few inches every year, rendering old elevation data obsolete (National Research
Council, 2007). Furthermore, improved data availability and methodological advancements
also necessitate the development of new flood maps.

In reality, most flood maps are older than five years. Starting in 2000, FEMA faced
Congressional pressure to update, modernize, and digitize its maps, and it began its Flood
Map Modernization program with a pledge of $5 million per year from Congress to fund the
efforts, but funding tapered off in 2003 (National Research Council, 2007). This program
was rebranded in 2009 as the Risk Mapping, Assessment, and Planning program (Risk
MAP) with renewed Congressional funding (FEMA, 2012). As a result of these investments,
FEMA’s digitized flood maps now cover more than 90% of the U.S. population.

FEMA prioritizes when and where map updates should occur by determining how likely
it is that existing maps are out of date (National Research Council, 2007). As FEMA
writes, “Risk MAP’s primary areas of focus include coastal flood hazard mapping, areas
affected by levees, and significant riverine flood hazard data update needs” (FEMA, 2012).
Relevant parameters for remapping prioritization include the age of the prior flood risk study,
historical flood damage occurring outside of previously mapped flood zones, and magnitude
of new dam and levee construction. FEMA partners with individual communities to run the
elevation studies and produce the maps. All communities within the same county receive
finalized flood insurance studies and flood maps at the same time.

3.2 Mandatory Purchase Requirements

Most mortgage lenders must require borrowers in high risk flood zones to purchase flood
insurance. The requirement stipulates that federal agencies, federally regulated lending in-
stitutions, and the GSEs must require borrowers in high risk flood zones to purchase flood
insurance for every mortgage that these entities originate, guarantee, or purchase.10 Further-

10This requirement was first implemented by Congress in the Flood Disaster Protection Act of 1973, which
applied to mortgages originated by federally regulated institutions or backed by federal agencies, such as the
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more, lenders must force-place flood insurance on behalf of the borrower if the borrower does
not comply. Mortgages originated by state-regulated lenders and securitized in private label
markets are excluded from this requirement; however, in my sample between 2010-2016, the
private label markets have less than a 5% market share. Insurance is required throughout
the life of the loan and should cover the full loan balance up to FEMA’s maximum coverage
limit of $250,000.

Direct estimates of lender compliance with the mandatory purchase requirement are
difficult to ascertain because FEMA does not systematically record whether the insurance
policy holder has a mortgage that is subject to the mandatory purchase requirement, and
their publicly available data does not include addresses so it cannot be combined with other
data sources. However, FEMA recently conducted a study where they matched policy-holder
information with data from the American Community Survey at the address level to obtain
estimates of lender compliance. Their calculations suggest that, in 2015, 60% of mortgage
borrowers in high risk flood zones had a flood insurance policy (FEMA, 2018). Furthermore,
their estimates also suggest that 67% of all non-renter flood insurance policy holders had
mortgages.

Some recent papers have explored the dynamics of flood insurance take-up. Wagner
(2021) looks at insurance purchase behavior inside flood zones and finds limited evidence
of private information. Bradt et al. (2021) find some evidence of adverse selection in flood
insurance purchases outside of flood zones, in that only people with high flood risk purchase
flood insurance.

When mortgage borrowers purchase flood insurance, their policy includes the name of
their lender, and insurance claim checks are written to both the borrower and the lender.
Flood insurance premium payments are managed similarly to homeowners insurance and
property taxes; premium payments are usually made to the lender and held in an escrow
account, after which the lender transfers the payment to the insurer. Flood insurance claim
checks are written to both the borrower and the lender, with payouts typically held in an
escrow account with the lender. The homeowner must receive the signature of the lender to
release insurance claim payments, meaning they cannot abscond with insurance payments
without the lender’s knowledge (Gallagher and Hartley, 2017). In the event of foreclosure,
lenders are entitled to keep the proceeds of insurance claims (Issler et al., 2019; Hoberock
and Griebel, 2018)

Federal Housing Authority. Congress extended the flood insurance requirement to the government-sponsored
enterprises (GSEs), Fannie Mae and Freddie Mac, in the National Flood Insurance Reform Act of 1994.
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3.3 Flood Insurance Coverage Limits

A key feature of the federal flood insurance program is that NFIP coverage is capped at
$250,000 for residential structures. The private markets do provide excess flood coverage
beyond the NFIP limit, but the availability of such products is be limited for properties
in high risk flood zones, especially in the states of Florida and Louisiana (Wells, 2006;
Goldberg, 2005). For example, the company Bankers Insurance says in a publicly available
manual that they do not underwrite excess flood policies in coastal FEMA flood zones
at all (Bankers Insurance Company, 2014). Only six companies are even admitted to write
excess flood policies in Florida (Florida Office of Insurance Regulation, 2021). Recent survey
data suggest that, as of July 2018, Florida’s admitted insurers had only 5,983 excess flood
insurance policies in force (Lingle and Kousky, 2018).

Within Florida, there is documented evidence of a general unavailability of private in-
surance in the property and casualty segment. After Hurricane Andrew in 1992, Florida
created a state-run reinsurance fund called the Hurricane and Catastrophe Fund, to stymie
further private insurer exit. Florida’s state-run re-insurer now has a 50% market share in
the re-insurance sector. Furthermore, the market share of Florida’s state-run private insurer
of last resort increases each year, now covering 8.2% of the market.11 Even when excess
coverage is provided by private markets, there is anecdotal evidence of insurer-driven policy
cancellations for properties deemed too risky or after flood events (Coueignoux, 2021). The
limited availability of private flood insurance in the highest risk segments is consistent with
documented evidence of insurer exit for other natural disasters (Flavelle, 2019).

The literature implies that private insurer exit from the highest-risk areas in Florida
arises from a combination of state-level price controls which limit premium increases and
other capital market frictions that restrict the availability of reinsurance (Oh et al., 2021).
In Florida, premium increases for private flood insurance, including excess flood insurance,
must be approved by the state insurance regulator. Insurers have raised concerns about
being unable to raise premiums after new information leads to updated risk assessments
(Kousky et al., 2018).

11Barry Gilway, the president and CEO of Citizens, the state insurer-of-last-resort, recently testified that
the marketplace in Florida is “shutting down,” and that “"The capacity in the marketplace has shrunk to
the point where, unfortunately, Citizens is becoming not the market of last resort, but, in many cases, the
market of first resort, and that was never intended for a residual market mechanism.”
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4 Data and Descriptive Evidence

The paper’s empirical analysis considers how mortgage terms vary with flood zone classifica-
tion and insurability. To do so, I construct a novel data set that combines geo-spatial data
from flood maps with geo-located data on mortgage characteristics and performance. The
final dataset focuses on the state of Florida and spans 2010-2016. The sample is restricted
to purchase mortgages for single-family homes. In this section, I describe the key datasets
and how I merge them. I then show some descriptive facts using the raw data, which help
set-up my identification approaches in Section 5 and 6. Further details on the data merge
are available in Appendix Section A.

4.1 FEMA Flood Maps

My primary measure of flood risk comes from FEMA’s flood maps. In Florida, the latest
flood maps and some historical ones can be downloaded directly from FEMA’s Map Service
Center as a geo-spatial database called the National Flood Hazard Layer. The digitized
maps can be downloaded for an entire county, including all the individual maps for each
community in that county. I obtain archived FEMA flood maps from geospatial libraries at
Princeton, University of Texas, University of Florida, Harvard, and Berkeley, which saved
snapshots of FEMA’s floodmaps for various counties in Florida from 1996, 2001-2009, and
2011.

FEMA releases a flood insurance study whenever it produces a new flood map. These
studies list when flood maps are revised for each community before county-wide flood maps
were introduced. The studies also include when county-level flood maps are introduced and
any subsequent revisions at the county-level. These two sets of information can be combined
to obtain the revision dates of the community’s current and historical flood maps.

For Levy, Calhoun and Clay counties, digitized flood maps that would be valid at the
beginning of my sample were not available from FEMA or in the university repositories, so
I digitized the floodmaps for these counties using PDFs of the historic map boundaries for
each community, which are also available from FEMA’s map service center.

4.2 Mortgage and Housing Data

I combine mortgage and housing data from BlackKnight McDash, HMDA, and ZTRAX to
obtain granular loan-level information on housing characteristics, mortgage characteristics,
and mortgage performance.
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BlackKnight McDash: Black Knight is a private company that produces the Mc-
Dash dataset, a comprehensive, loan-level dataset on mortgages that includes information
on mortgage characteristics, borrower characteristics, and mortgage performance. The data
is compiled from mortgage servicers and accounts for approximately two-thirds of the over-
all mortgage market. Mortgage characteristics in the data include the origination month,
interest rate, loan-to-value ratio, debt-to-income ratio, maturity, property value, and type of
mortgage (e.g. FHA, VA, Jumbo, etc.). The data also include select borrower characteristics
such as FICO credit score. Location information is limited to 3-digit or 5-digit zip codes.
Importantly, this data includes information on the performance of the mortgage from origi-
nation to its final payment. This includes whether the mortgage is current or in delinquency
status, as well as events such as prepayment, default or foreclosure.

Home Mortgage Disclosure Act (HMDA): I obtain additional mortgage characteris-
tics from the Home Mortgage Disclosure Act, which is administrative data on the universe of
mortgage applications and originations. HMDA data include the lender name, loan amount,
property type, loan purpose, and the applicant’s income, gender, and race. Location infor-
mation is limited to the census tract of the house.

Zillow ZTRAX: Zillow produces the Zillow Transaction and Assessment Dataset (ZTRAX),
which includes historical tax assessment records as well as information on home sales and
loan records from deeds stored in county clerk offices. Each housing transaction includes the
date, sales price, mortgage loan amount, mortgage lender’s name, and the precise location of
the property. The tax assessor data includes basic characteristics for each parcel, including
assessed land values, total assessed values, and square footage. The transactions and assessor
data within ZTRAX can be merged together with a unique parcel-level identifier created by
Zillow.

4.3 Additional Data

Flood Insurance Policies and Claims: I obtained data directly from FEMA on the uni-
verse of flood insurance policies and claims through a Freedom of Information Act request.
Policies data includes insurance contract information such as the premium and coverage level
of individual policies. The claims data include FEMA’s property damage assessments, claims
paid out, and FEMA’s estimates of building replacement values. Location information in
both the policies and claims datasets is limited to the zip code and flood zone classification.
Some of this data is now available publicly through FEMA’s OpenFEMA API, but my data
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includes some variables which are not in the public dataset, such building value assessments
as property damage assessments.

Construction Costs: I obtain data on construction costs from R.S. Means, a consulting
company and data provider for the construction industry. The dataset includes estimates of
annual construction costs at the 3-digit zipcode level, which can vary by the size of the home
and other characteristics such as whether the home has a basement. I use construction costs
for a 1500 square foot, average quality home without a basement. Because not all 3-digit
zipcodes are available, I average across locations to obtain a state-level measure of annual
construction costs.

First Street Foundation Flood IQ Model: I obtain parcel-level estimates of flood
probabilities from the First Street Foundation Flood IQ dataset as an independent assess-
ment of flood risk that complements my flood maps from FEMA. This dataset includes
estimates of the projected depth of flooding based on past major flood events, local adap-
tation measures such as the construction of dams/levees, and various scenarios for sea level
rise.

4.4 Merge and Sample Selection

I merge both the McDash and HMDA datasets with Zillow ZTRAX to obtain the latitude
and longitude coordinates of each property, as well as other characteristics of the properties
which secure the mortgages. I first limit each dataset to purchase mortgages for single-family
homes. To merge the McDash data with the ZTRAX deeds data, I conduct a fuzzy merge
via the zip code of the house, origination date, the loan amount, the property value, and the
maturity of the mortgage. For merging the HMDA data to the ZTRAX deeds data, I do a
fuzzy merge via the zip code of the house, origination year, loan amount, and lender name. I
followed closely the method outlined in Bayer et al. (2016), though with some modifications.
This merging process is described in detail in Appendix A. I was able to merge 339,471 loans,
representing approximately 75% of the McDash data, 50% of the ZTRAX data, and 30% of
the HMDA data.12

With each mortgage geo-located in the merged sample, I can overlay the historic and
current FEMA flood maps to obtain the mortgage’s flood zone classification at origination.

12My match rates are slightly lower than those in Gerardi et al. (2020), which uses the matching algorithm
by the Federal Reserve Bank of Philadelphia. They incorporate information from the restricted HMDA data,
including the exact origination date (rather than origination year), and can match approximately 34% of
mortgages in McDash.
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I then incorporate data on annual construction costs and flood insurance take-up rates at
the zip code - flood zone - year level. I incorporate alternative flood risk measures from
Flood IQ using a fuzzy match on addresses.

To construct the final sample, I drop any missing observations for interest rates, applicant
income, property tax assessment values, building size, and construction costs. The final
sample covers 300,530 mortgages over 837 zip codes, representing all 67 counties. Table
1 provides summary statistics for the analysis sample and the full HMDA, McDash, and
ZTRAX samples. Although a subset of the input datasets, the final estimation sample
appears fairly representative of the input data sets, even for the variables in McDash that
were not used in the merge, such as credit scores, debt-to-income ratios, and interest rates.

4.5 Descriptive Evidence

In this section, I show some initial cuts of the main sample by FEMA flood zone status. A
striking pattern which emerges is that loan-to-value ratios are much lower in flood zones. I
use the differences in the composition of flood zones to help motivate the empirical strategies
in Sections 5 and 6.

Figure 1 shows the spatial distribution of flood risk and the ratio of down payments to
property values across Florida in 2013. Flood risk in Panel A is defined as the share of homes
located in a high risk flood zone. Unsurprisingly, flood risk is mostly concentrated in coastal
counties. The down payments ratio in Panel B is defined as one minus the loan-to-value ratio
at origination. There is a strong positive relationship between flood risk and down payment
ratios, with the highest risk counties also having higher average down payments.

Table 2 shows summary statistics on mortgage characteristics at the loan level. Approx-
imately 20% of the sample of mortgages are located in flood zones. A few notable patterns
emerge when comparing mortgage characteristics by flood zone status. Mortgages in flood
zones have lower loan-to-value ratios (89% versus 87%), slightly higher interest rates (4.19%
versus 4.2%), and lower delinquency rates (1.51% versus 1.14%) than borrowers outside flood
zones. Flood zones also have different types of borrowers on the basis of observables. Bor-
rowers in flood zones on average have higher FICO credit scores (720 versus 726), higher
incomes ($76,253 versus $99,944), and are more likely to be purchasing second homes. Addi-
tionally, the characteristics of the properties securing the mortgages also differ by flood zone.
Property values are higher in flood zones ($206,531 versus $281,755), and these properties
are larger (1,869 square feet versus 1,968 square feet). Another key difference is that loan
sizes are almost $50,000 higher in flood zones, and the share of jumbo loans jumps from
1.69% to 4.55%.
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Table 3 shows zip code-level characteristics on flood insurance. Flood insurance takeup
rates are much higher in flood zones, consistent with the mandatory purchase requirement
and the fact that flood zones have more flood risk. Claim probabilities are higher in flood
zones, though average claims are roughly similar. This is consistent with documented evi-
dence that individuals who voluntarily buy flood insurance outside of flood zones are likely
to also face high flood risk Bradt et al. (2021). The empirical analysis in Section 5 controls
for flood insurance take up rates at the flood zone - zip code - year level to account for the
pattern.

Table 2 shows that it is important to control for differences in the composition of bor-
rowers in flood zones. Flood zones have richer and higher credit quality borrowers who buy
larger homes. The empirical analysis in Section 5 will control for these observable differ-
ences in composition when establishing lender-driven risk management in flood zones. The
empirical analysis in Section 6 will establish that the differences in flood zone composition
are partly driven by lender credit rationing.

One way to address the interaction of flood zone status and borrower composition is to
examine whether the relationship between mortgage terms and flood zone status is uniform
across the distribution of income. Figure 2 plots the average loan-to-value ratio, interest
rate, and delinquency rate by flood zone and log income. For each ventile of log income in
flood zones, loan-to-value ratios are lower, interest rates are higher, and delinquency rates
are roughly the same. The plots look similar using breakouts by log property value (see
Figure B.1) and by credit score (see Figure B.2). The fact that the relationship is uniform
across the distribution of income, credit scores, and house prices is strongly suggestive that
composition differences may not explain the entirety of the relationship between flood zone
status and mortgage terms.

In Table 4, I show that the broader patterns hold even after controlling for credit score,
income, and property values. Panel A shows the regression with just the three controls, and
Panel B shows the regression with the same controls and adding zip code-year fixed effects.
For both regressions, standard errors are clustered at the county level. Loan-to-value ratios
are almost 85 basis points (or 0.85 percentage points) lower in flood zones, and interest rates
are higher by 1 basis point (.01 percentage point). Delinquency rates are 6 basis points
lower, though the difference is not statistically significant. These patterns are consistent
with Hypothesis 1 and Hypothesis 2, outlined in Section 2. Since, loan-to-value ratios are
on average 2 percentage points lower in flood zones, the estimate in Table 4 implies that
only 43% of the average reduction of loan-to-value ratios in flood zones can be explained by
observable differences in borrower composition.
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4.6 Unobserved Amenities

If there are unobserved variables that are correlated with flood zone status, then differ-
ences in equilibrium mortgage terms may be driven by selected borrowers in flood zones
demanding different mortgage terms rather than by banks offering different contracts. The
ideal experiment would consider how mortgage terms vary in and out of flood zones for the
same individual buying the same exact property. While the descriptive evidence does not
address the possibility of unobserved omitted variables, it helps narrow down what types of
endogeneity issues could arise.

First, the patterns are unlikely to be explained by adverse selection in flood zones. Similar
ex-post mortgage performance combined with higher incomes and credit scores does not
suggest that flood zones on average attract lower quality borrowers. Furthermore, all-else
equal, the literature suggests that individuals with riskier collateral would prefer larger loan-
to-value ratios rather than smaller loan-to-value ratios (Hertzberg et al., 2018; Bailey et al.,
2019), a result which is inconsistent with the observed pattern.

However, the cross-sectional patterns can be explained by positive selection (also called
advantageous selection). In this channel, wealthier individuals who tend to have smaller
loans also prefer to live in flood zones. This can occur because flood zones have unobserved
amenities, such as water views and beach front access, which disproportionately attract
wealthy people. I partly address this concern in Table 4 by controlling for applicant incomes,
property values, and credit scores directly. Additionally, as argued in Section 2, wealthier
people in equilibrium would not choose both lower LTVs and higher interest rates, which is
what I find in the cross-section.

However, the best way to address this demand-side explanation would be to obtain vari-
ation in flood risk that is exogenous to unobserved amenities. In Sections 5 the 6, I consider
two sources of variation in flood risk that are plausibly exogenous to unobserved amenities.

5 Effect of Flood Insurance on Bank Credit Rationing

In this section, I utilize the fact that government flood insurance contracts only cover up to
$250,000 in damages to identify lender credit rationing in flood zones. Smaller homes can be
completely insured, whereas larger homes are only partially insurable. I show that LTVs are
insensitive to flood risk when the home can be completely insured, and are sensitive to flood
risk when homes can only be partially insured. I also show that the relationship between
flood zone status and LTVs changes at the flood insurance coverage limit, a result which is
unlikely to be driven by unobserved amenities or other demand-side explanations.
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5.1 Empirical Strategy

As discussed in Section 3, mortgage borrowers in flood zones are required to purchase flood
insurance, and FEMA’s NFIP insurance program dominates the market. The NFIP only
provides up to $250,000 in coverage, and there are limited private options for excess flood
coverage in Florida’s highest risk flood zones. This leaves a large segment of homeowners in
flood zones under-insured. I will exploit this setting to consider how access to full insurance
changes mortgage contracts in flood zones.

Banks are not exposed to flood risk when homes are fully insurable because every dollar of
flood damage is offset by a dollar of insurance payments and flood insurance is mandatory.13

Therefore, banks do not need to adjust mortgage terms in flood zones when homes can be
fully insured.

In contrast, when homes cannot be fully insured, banks retain exposure to flood risk
because flood damages can exceed the flood insurance cap. Therefore, banks only have an
incentive to ration credit in flood zones for under-insured homes. I formalize this point in
Appendix Section C.2.

This leads to the following specification:

Yizt = αzt +β1FloodZoneit +β2CapBindsit +β3FloodZoneit×CapBindsit +γ′Xit +εizt (1)

for a mortgage i originated in year t in a zip code z. The dependent variable Yizt is
either the loan-to-value ratio at origination, the interest rate at origination, or an indicator
for whether the mortgage becomes delinquent by more than 90 days within the first three
years of origination. The indicator FloodZoneit equals one when the property is located
in a FEMA-defined flood zone, and zero otherwise. The indicator CapBindsit equals one
when the replacement cost of a home exceeds the flood insurance coverage limit, and 0
otherwise. The specification includes zip-year fixed effects in αzt. These are important since
they absorb any time-varying local shocks at the zip code level which could also influence
loan-to-value ratios. I also include a rich set of mortgage and borrower controls in Xit to
separate the independent effect of being in a flood zones from any effects due to differences
in the composition of flood zones. Borrower characteristics include the borrower’s FICO
credit score and annual income at origination. Mortgage characteristics include the property
value, maturity, debt-to-income ratio, and combined loan-to-value ratio for other liens on
the property. I also include indicator variables for mortgage type, such as whether it is a
first mortgage, second home, low grade mortgage, full document mortgage, jumbo loan, or

13Even if insured homeowners in flood zones choose to default after floods, lenders are still entitled to
receive insurance proceeds in foreclosure (Hoberock and Griebel, 2018; Issler et al., 2019).
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an adjustable rate mortgage. Finally, I control for flood insurance take-up rates which vary
at the flood zone - zip code - year level. Standard errors are clustered at the county level.

The key parameters of interest are β1 and β3. For homes that can be fully insured
(CapBindsit = 0), loan-to-value ratios in and out of flood zones should be the same because
banksare no longer exposed to flood risk and therefore do not need to ration credit. This
suggests that the estimated coefficient β1 = 0. For homes that cannot be fully insured
(CapBindsit = 1), loan-to-value ratios should be lower in flood zones, because banks retain
exposure to flood risk. This suggests that the estimated coefficient β3 < 0.

Measuring Whether the Insurance Cap Binds: To determine whether the insurance
cover limit can bind, I consider whether a home’s replacement costs at origination exceed the
$250,000 insurance cap. Replacement costs are defined as the cost of rebuilding the exact
same home if it is totally destroyed, and are ubiquitously used by insurers to determine
appropriate coverage amounts for an insurance policy. The idea behind this measure is that,
if the home is completely destroyed, the homeowner pays the difference between the cost
of rebuilding the home and insurance claim pay outs. The replacement cost depends on a
variety of factors, including local construction costs, square footage, the quality of materials
used to build the home, and other home features. I develop a proxy for this measure by
multiplying construction costs for an average quality home (dollar per square foot) and the
size of the home (square feet). I obtain annual construction costs for Florida from the R.S.
Means company, and I obtain the building size from Zillow ZTRAX’s assessment dataset
(see Section 4 for more details). Figure 3 plots a histogram of this variable in and out of
flood zones; the distribution is smooth through the $250,000 coverage limit.

One might worry that floods do not cause high enough levels of damage for the insurance
coverage limit to be relevant to banks. In Figure B.3, I plot the distribution of flood insurance
claims for each replacement cost value. While large floods in Florida are rare, they certainly
occur.

Next, I estimate whether the effect of flood zone on loan-to-value ratios is larger for
homes that have a larger portion of the home uninsured. To do so, I replace the CapBindsit

indicator in Equation 1 with an indicator for replacement cost categories RepCostk,it. I
create these k categories using replacement cost increments of size $25,000; for example,
homes with an estimated replacement cost of $100,000 and $125,000 will be included in the
same replacement cost category. I then estimate the following specification:
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Yizt = αzt + δF loodZoneit +
∑

k 6=75,000
θkRepCostk,it

+
∑

k 6=75,000
φk(FloodZoneit ×RepCostk,it) + γ′Xit + εit (2)

for a mortgage i originated in year t in a zip code z. As earlier, FloodZoneit is an indicator
variable which equals one for homes that are located in a FEMA-defined flood zone and
zero otherwise. I include zip-year fixed effects αzt and the same set of loan-level control
variables in Xit that I used in Equation 1. The key parameters of interest here are the φk

coefficients, which show the average reduction of loan-to-value ratios in flood zones for that
replacement cost category relative to the omitted category of homes with replacement costs
less than $75,000. For homes with replacement costs less than $250,000, I expect φk = 0.
For homes with replacement costs above $250,000, I expect φk < 0. Furthermore, I expect
the effect of being uninsured to increase with how much of the home remains uninsured,
with φk+$25,000 < φk < 0. Standard errors are clustered at the county level.

Finally, I seek to obtain an estimate of how much loan-to-value ratios respond to un-
insurable risk in flood zone that can be interpreted as an elasticity. To do so, I estimate
the following specification for those mortgages where replacement costs exceed the flood
insurance cap:

Yizt = αzt+β1FloodZoneit+β2logInsGapit+β3FloodZoneit×log InsGapit+γ′Xit+ηizt (3)

The dependent variable of interest Yizt in this specification is the log loan-to-value ratio.
The variable InsGap, or the insurance gap, is the uninsurable share of the home, defined
as the replacement cost minus $250,000 divided by the property value. The key parameter
of interest is β3, which can be interpreted as how much loan-to-value ratios change with
respect to a 1 percent change in the uninsurable share of the home for properties located in
flood zones. This is a measure of the pass-through of insurance availability into mortgage
contracts. Standard errors are clustered at the county level.

Identifying Assumptions: They key omitted variable in this setting is unobserved
wealth, because wealthier people tend to choose mortgages with higher down payments. As
a result, any trend in loan-to-value ratios may be driven by borrower preferences rather than
lender risk management. I argue in Section 2 that this issue can be addressed by looking at
both loan-to-value ratios and interest rates, since borrowers are less likely to choose higher
down payments if they do not receive an interest rate advantage. However, here I try to deal
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with this endogeneity concern more directly by exploiting variation in flood risk exposure
this is plausibly exogenous to unobserved wealth.

There are two particular endogeneity issues which arise because of unobserved wealth.
First, wealthier people are more likely to live in flood zones because of unobserved amenities.
Second, wealthier people are more likely to live in larger homes with higher replacement costs.
The correlation between unobserved wealth and replacement costs violates the identifying
assumptions of regression kink designs, which would require exogeneity of unobserved wealth
to replacement costs within the chosen bandwidth around the threshold. I do not have
enough observations to choose a bandwidth where this assumption is likely to hold.

Instead, I rely upon a weaker identifying assumption that accommodates a correlation
between unobserved wealth and flood zone, as well as unobserved wealth and replacement
costs. I assume these biases are additive, meaning that the expected value of loan-to-value
ratios for homes with no flood risk exposure can be written as the sum of a flood zone fixed
effect and a replacement cost fixed effect. This assumes that there is no differential omitted
variables bias for replacement costs by flood zone status, meaning that homes outside of flood
zones with a given replacement cost serve as a control group for homes inside of flood zones
with that same replacement cost. That is to say, the correlation between unobserved wealth
and replacement cost can be accounted for using homes outside of flood zones as a control
group. In summary, the ordinary least squares exogeneity assumption behind Equation 1
is that, in the absence of flood risk, the average difference in mortgage terms for homes in
flood zones and outside of flood zones would be constant across replacement cost categories.
The identifying assumption would be violated if, for example, borrowers in flood zones with
homes of a given replacement cost tend to have higher unobservable wealth than borrowers
outside of flood zones who purchase a home with the same replacement cost.

Like a parallel trends assumption in the standard difference-in-differences context, this
exogeneity assumption cannot be tested directly. However, it can be partially evaluated by
observing whether the relationship between mortgage terms and replacement costs for homes
below the insurance cap are similar in and out of flood zones. In other words, I can check
whether the coefficients for φk in Equation 2 equal to zero for homes with replacement costs
less than 250,000. This would support the identifying assumption.

5.2 Results

Table 5 reports the estimates of Equation 1 for loan-to-value ratios. In Column (1), I run the
regression without zip code - year fixed effects, and in Column (2) I include zip code - year
fixed effects. Both specifications imply that there is no significant effect of being in flood
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zone on loan-to-value ratios when homes can be completely insured. However, for homes that
are under-insured, being in a flood zone leads to a 81 basis point (0.81 percentage point)
reduction in loan-to-value ratios according to my preferred specification in Column (2). The
magnitude of the coefficient is higher in Column (1), suggesting that there is some variation
across loan-to-value ratios across zip codes and years. In Column (3), I restrict the sample to
consider houses with replacement costs within $100,000 of the flood insurance cap. I obtain
that the results continue to hold, although the coefficient roughly halves to 47 basis points
(0.47 percentage points). This suggests that the reduction of loan-to-value ratios in flood
zones may be larger for homes with higher replacement costs.

Table 6 reports the estimation results for Equation 1 for interest rates and delinquency
outcomes. Columns (1) and (2) consider the full sample, and columns (3) and (4) consider the
restricted sample for homes with replacement costs within $100,000 of the flood insurance
cap. In both samples, interest rates do not respond to flood zone status, regardless of
whether homes are above or below the insurance cap. Similarly, Columns (2) and (4) show
that delinquency outcomes are also not significantly different in flood zones, regardless of
whether the insurance cap binds.

I next consider how the effect of flood zone status on mortgages varies by the replacement
cost of the home. Panel A of Figure 4 plots the φk coefficients obtained by estimating
Equation 2 for loan-to-value ratios. There is no average difference in loan-to-value ratios in
and out of flood zones when replacement costs are lower than the $250,000 coverage limit.
However, once replacement costs pass the insurance coverage limit, loan-to-value ratios are
significantly lower in flood zones. Furthermore, the magnitude of the coefficient increases
with how much of the home remains uninsured. Homes with replacement cost of $300,000
in flood zones have loan-to-value ratios are 1 percentage point lower that homes in the same
group outside of flood zones. For homes with a replacement cost of $425,000, loan-to-value
ratios are more than 2.5 percentage points lower in flood zones.

In Panel B of Figure 4, I plot the φk coefficients obtained by estimating Equation 2 for
interest rates. Interest rates are on average a few basis points higher in flood zones, although
they are never significantly different in flood zones at any replacement cost level.

In Panel C of Appendix Figure B.4, I also show that delinquency rates are on average a
few basis points lower in flood zones across replacement cost categories, though again not
significantly so.

Column (4) of Table 5 shows the results of estimating Equation 3. I find that in flood
zones, a 1% increase in the share of the home that is uninsurable leads to a 0.5% decline in
loan-to-value ratios at origination.

Figure 4 affirms Hypothesis 1 and 2 from Section 2. Banks respond to uninsurable
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exposures in flood zones by lowering loan-to-value. Interest rates are on average higher,
though not significantly so. Delinquency rates are equalized in and out of flood zones for
each replacement cost category. This is not consistent with a demand-side phenomenon
where richer borrowers trade of smaller loan sizes to obtain lower interest rates. This shows
that banks offer different mortgage terms to borrowers in flood zones, and that their primary
margin of adjustment is through lower loan-to-value ratios rather than interest rates.

Appendix Figure B.4 shows that on average delinquency rates are the same in and out
of flood zones for each replacement cost category, conditional on observables. This suggests
that loan-to-value ratios are reduced to the point that delinquency rates are equalized in and
out of flood zones.

5.3 Robustness

In Appendix Table B.1 I report results for loan-to-value ratios using alternate measures of
whether the flood insurance cap binds. The first measure considers whether the house price
exceeds $250,000, and the second measure uses property tax assessments to calculate the
value of the structure, defined as the difference between the total assessed value of the home
and the assessed value of the land. The results are similar using both measures of whether
the flood insurance cap binds.

One may wonder whether the results are driven by a formal or informal rule from the
government-sponsored enterprises. I address this concern in three ways. First, I check GSE
underwriting manuals and confirm that they do not require loan-to-value ratio adjustments
in flood zones. Their only discussion of flood risk relates to the mandatory flood insurance
purchase requirements. Second, I look at how flood zone status affects loan-to-value ratios
when loans are immediately sold to government-sponsored enterprises. Appendix Figure B.5
shows that loan-to-value ratios are only lower in flood zones when loans are kept by the
originating bank. For loans which are sold to Fannie Mae or Freddie Mac, loan-to-value
ratios in flood zones are not significantly different, and in some cases are significantly higher.
Third, in Appendix Table B.2, I show that flood insurance coverage limits do not matter for
mortgage pricing when loans are immediately sold to the government-sponsored enterprises.

One may wonder whether the flood insurance coverage limit lines up with the conforming
loan limit, which determines whether a mortgage is eligible to be securitized. The baseline
conforming loan limit in my sample period is $417,000, well above the insurance coverage
limit of $250,000. While there have been changes to the conforming loan limit in recent
years, the FHFA did not make any changes to the conforming loan limit between 2006 and
2016, which covers the entirety of my sample. The relationship between replacement costs
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and average property values are also roughly linear, though there is significant heterogeneity,
so all the estimates include property values as a control variable. Of the 68,604 loans that
are immediately purchased by the GSEs, 29,768 are above the flood insurance cap, showing
that the lack of significance in Appendix Table B.2 is not due to the absence of conforming
loans that exceed the flood insurance cap.

6 Real Effects of Updated Flood Maps and Bank Credit
Rationing

This section employs a second source of variation in flood risk to investigate whether the
lenders ration credit in flood zones. Rather than looking at insurance coverage limits, I use a
difference-in-differences strategy which utilizes the staggered release of updated flood maps
from FEMA that expand the boundaries of high risk flood zones. This leads to changes in
flood risk assessments while fixing unobserved location-specific characteristics. I show that
banks respond to the updated maps by requiring lower loan-to-value ratios, which in turn
changes the composition of borrowers in flood zones towards richer people.

6.1 Background

In Section 4, I document that loan-to-value ratios are significantly lower in flood zones, even
after controlling for the credit score, income, property value, and zip code-year fixed effects.
In Section 5, I document that the cross-sectional relationship between loan-to-value ratios
and flood zone status changes around the flood insurance coverage limit. This empirical
strategy address the endogeneity of unobserved wealth under the identifying assumption
that the relationship between unobserved wealth and replacement costs is the same in and
out of flood zones. While I provide evidence that supports the identifying assumption, it
is still possible that homes in flood zones with higher replacement costs attract borrowers
with more wealth than homes outside of flood zones of the same replacement cost group only
when the size of the home is sufficiently large, because those homes have higher unobserved
amenities. In this section I therefore consider a second source of variation that does not rely
on this assumption.

In particular, I consider an experiment in which flood risk assessments are updated while
other aspects of an area remain fixed, thus allowing me to obtain variation in flood risk
assessments that are exogenous tp unobserved amenities in a flood zone. Obtaining random
variation in fundamental flood risk is challenging because flood risk changes extremely slowly
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over time. In this section, I follow the literature and consider variation in information about
flood risk (Giglio et al., 2021). I look particularly at information contained in the release
of updated flood maps from FEMA. As discussed in Section 3.1, FEMA produces updated
flood maps that include new data on elevation on land erosion which are essential inputs for
modeling flood risk (National Research Council, 2007).

The release of an updated map has two effects. First, banks must update their compli-
ance systems and notify any mortgage borrowers in newly mapped flood zones to buy flood
insurance; this applies to both existing and new borrowers. In Appendix Table B.3, I verify
that new borrowers in flood zones do also purchase flood insurance, showing evidence of
lender compliance with the flood insurance mandatory purchase requirement. Second, these
maps arguably provide new information that change flood risk assessments without changing
other features of an area that can induce borrower selection, such as coastal amenities. These
new flood maps are extremely costly to produce, and they often produce new data that are
subsequently used by the private sector to model flood risk. I argue that banks free-ride on
FEMA for this information, and in the rest of this section, I explore the informational effect
on mortgage terms.

6.2 Empirical Specification

New flood maps do not always lead to heightened perceptions of risk. Some maps expand the
boundaries of flood zones in a zip code while others may keep boundaries the same or even
contract them. For example, flood boundaries may contract because communities construct
levees and dams to manage water flow. On the other hand, flood boundaries may expand
if new development raises the surface elevation of water. To understand in which direction
the maps change risk assessments, I classify each zip code by whether the new maps expand
flood zone boundaries or contract them. I make this determination by comparing the share
of homes in a flood zone under the old map to the share of homes in a flood zone under the
new map for a given zip code. I also check to make sure that the updated map is actually
the expansion of an existing flood zone rather than a shift in the location of the flood zone
by checking that homes in a flood zone under the old map are also in a flood zone under the
new map.

To implement the difference-in-differences design, I restrict the sample and define treat-
ment as follows. I first exclude any counties that are re-mapped multiple times in sample.
Second, if a county c receives a new map, I classify a zip code z in that county as “treated”
if the new map expands that zip code’s flood zone boundaries. I exclude zip codes that
do not change or have contracted boundaries because I want to isolate areas that lead to a
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heightened assessment of flood risk; I consider these zip codes in a robustness check. Third,
because my sample spans 2010-2016, I limit to counties that are remapped in 2012, 2013,
and 2014 to ensure I have enough years before and after the remappings. Figure 5 shows
which counties were remapped in which year. Fourth, I include counties that do not receive
an updated map between 2005 - 2016 as a control group.

I estimate the following specification at the mortgage level:

Yi,c(z),t = αc(z) + δt +
−2∑

h=−4
βhI{EExpanded

i,c(z),t = h}+
4∑

h=0
βhI{EExpanded

i,c(z),t = h}+ γ′Xi + εi,c(z),t (4)

The dependent variable Yi,c(z),t is the mortgage’s loan-to-value ratio at origination, inter-
est rate, and other outcomes of interest. For each mortgage i that is originated at time t, I
identify whether its county c receives an updated map, the year of the updated map τc(z),
and whether it is in a treated zipcode z that has an expanded flood zone. I construct the
event-time variable EExpanded

i,c(z),t = t − τc(z) which reflects the origination year relative to the
release of the county’s updated map. The variable is defined for zipcodes where updated
flood maps expanded flood zone boundaries and equals zero for never-treated counties in the
control group which are not re-mapped between 2005-2016. I include year fixed effects δt

and county fixed effects αc(z) which control for any unobserved year or county shocks. The
staggered difference-in-difference design compares treated counties to the not-yet-treated
counties and never-treated counties (Callaway and Sant’Anna, 2021). In some specifica-
tions, I also include FICO score and debt-to-income ratios as loan-level controls, represented
by Xi. Treatment occurs at the county level since all communities in a county receive a new
flood map at the same time. I therefore cluster standard errors at the county level (Bertrand
et al., 2004).

The key parameters of interest in Equation 4 are the βh coefficients on the event-time
indicators which estimate the outcome at a given event-time relative to the omitted category
h = −1, the year prior to the updated map.

Hypothesis 1 can be tested by using loan-to-value ratios as the dependent variable for
Equation 4. Under Hypothesis 1, the coefficients on the event-time indicators after the
remappings are negative, showing reduced loan-to-value ratios after the release of updated
flood maps (β1, β2, β3, β4 < 0).

Hypothesis 2 can be tested by using interest rates as the dependent variable for Equation
4. Under Hypothesis 2, the coefficients on the event-time indicators after the remappings
should not be negative, showing increased interest rates after the release of updated flood
maps (β1, β2, β3, β4 > 0).
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I also consider following pooled specification:

Yi,c(z),t = αc(z) + δt + βPostExpanded
c(z)t + εi,c(z),t (5)

The variable PostExpanded
c(z)t equals 1 after an area receives a map update and equals 0 before-

hand. The variable also equals 0 for those counties that are never remapped and serve as
controls. The variable is not defined for zipcodes who receive an updated floodmap that
contracts flood zone boundaries. For my outcome variables Yi,c(z),t, I consider delinquency
rates, debt-to-to-income ratios, and maturity.

A key assumption of this approach is that loan-to-value ratios among the treated and
control groups would have evolved in parallel in the absence of any re-mappings. Under
the common trends assumption, for all dependent variables, coefficients on the event-time
indicators before the remappings should be zero (β−4, β−3, β−2 = 0).

This empirical strategy uses variation in both the location and timing of the release of
updated maps. Therefore another key assumption of this approach is that the timing of
map updates is uncorrelated with other determinants of loan-to-value ratios. To validate
this assumption, I check that most socio-demographic characteristics related to a mortgage
fail to predict when a new map is released. I also check FEMA’s publications on how they
prioritize new map updates to ensure their decision rule does not depend on variables that
are are endogenous to loan-to-value ratios.

6.3 Results on Mortgage Terms

Panel A of Figure 6 shows the difference-in-differences estimation results for loan-to-value
ratios and plots the βh coefficients from Equation 4. Consistent with Hypothesis 1, loan-to-
value ratios decline in the years following the introduction of the updated map. The results
are robust to including credit scores, debt-to-income ratios, and interest rates as loan-level
controls, as shown in Appendix Figure B.6. In the first year of the remapping, loan-to-value
ratios decline on average by 40 basis points, though this result is not statistically significant.
The reduction is larger in the second year, closer to 1.5 percentage points. By the third
year, loan-to-value ratios are almost 2 percentage points lower in the treated group. This
suggests that after the remappings expand flood zones boundaries in a zip code, borrowers
on average receive loans with lower loan-to-value ratios.

Panel B of Figure 6 shows the difference-in-differences estimation results for interest rates
and plots the βh coefficients from Equation 4. Consistent with Hypothesis 2, interest rates
are higher on average in the years following the introduction of the updated map though these
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results are not statistically significant. In terms of magnitudes, interest rates are between
5-10 basis points higher after the remapping. Importantly, the coefficient estimates from
both regressions support the parallel trends assumption. Taken together, the results suggest
lenders reduce loan-to-value ratios and keep interest rates mostly the same, or if anything
slightly higher.

Figure 7 shows the decomposition of loan-to-value ratios for loan sizes (Panel A) and
property values (Panel B) separately. Both loan sizes and property values of mortgage
transactions begin increasing immediately after the remapping, with loan sizes increasing
by less than property values on average. Importantly, this result does not imply that flood
risk is positively capitalized into house prices. Panel C of Figure 7 shows that the types
of homes which are transacted change after the remappings, shifting towards larger homes.
Three years after the remappings, transacted homes are on average 100 square feet larger on
average.

In Figure 8, I run the regression for loan-to-value ratios separately by high and low
credit score groups. Individuals with credit scores above 740 are referred to as superprime
borrowers and rarely default on their mortgages or in credit card markets. For super prime
borrowers, loan-to-value ratios actually increase on average after the remapping, though the
results are not statistically significant. The reduction in loan-to-value ratios is entirely driven
by borrowers with credit scores below 740, and not borrowers that are superprime.

Table 7 shows the results for Equation 5. Column (2) shows that debt-to-income ratios on
average reduce by 15 basis points in the post-remapping period, though not significantly so.
The standard errors are less than 1 percentage point, suggesting a fairly precisely estimated
zero effect on debt-to-income ratios. Column (2) shows that average mortgage maturity
reduces by less than one month after the remappings, and this result is also not significant.
The results suggest that loan-to-value ratios are the key margins of adjustment.

Column (1) of Table 7 shows the results for delinquency rates. Delinquency rates reduce
on average by 1 percentage point after the mappings, although the result is not statistically
significant at the 5% level. The sign suggests that lower loan-to-value ratios do have the
intended effect of lowering delinquency rates.

6.4 Results on Borrower Composition

Figure 9 shows the effects of the remappings on the composition of borrowers in flood zones.
Panel A shows the effects on log income. This variable is the annual applicant income
reported by the HMDA data. In the first year after the remapping, log incomes significantly
increase by 5%. In the second year after the remapping, log incomes increase by almost
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10%, and this number increases further to 12% in the third year. Panel (B) shows similar
results for FICO credit scores. Credit scores increase by 3 points in the first year after the
remapping. Two years after the remapping they are 5 points higher, and three years after the
remappings they are 8 points higher. There are also no visible pre-trends in either variables.

Why do we observe a change in borrower income and credit scores? There could be a
supply-side explanation or a demand-side one. After the remapping, homeowners are re-
quired to purchase flood insurance, and as shown in Figure 6a, down payment requirements
increase. The combination of these two requirements can prevent more liquidity-constrained
borrowers from moving into a zip code, because they cannot afford the out-of-pocket pay-
ments. This could lead to the observed change in borrower composition.

However, an alternative explanation could be advantageous selection on flood risk. Im-
portantly, these results cannot be driven by unobserved amenities driving higher quality
borrowers into flood zones, since location-specific coastal amenities are kept fixed by the
difference-in-differences design. In this story, only risk-seeking richer individuals that can
bear flood risk are willing to move to an area with a perceived increase in flood risk. Lower
loan-to-value ratios could then reflect the preferences of these risk-seeking richer individuals.
I show that advantageous selection is unlikely to drive these results for two reasons. First,
in Panel A of Appendix Figure B.6, I show that loan-to-value ratios decline even after con-
trolling for credit scores and debt-to-income ratios. Furthermore, in Panel (B) of Appendix
Figure B.6, I add interest rates as a control. This shows that loan-to-value ratios decline even
when comparing individuals with the same credit scores, debt-to-income ratios, and interest
rates. As argued in Section 2, a smaller loan size with no offsetting benefit in terms of rates
is a worse financial deal for the borrower. Taken together, the results are most consistent
with bank credit rationing.

6.5 Robustness

The staggered difference-in-differences design compares treated counties with not-yet-treated
counties and untreated counties. One possible identification-related concern is that the
results may be driven by unobserved county-year shocks rather than the causal effect of the
remapping. To address this concern, I conduct a placebo test by running the same staggered
difference-in-differences specification for zipcodes that receive an updated map which does
not change flood zone boundaries. More specifically, I run the following model:

Yi,c(z),t = αc(z) + δt +
−2∑

h=−4
βhI{ENoChange

i,c(z),t = h}+
4∑

h=0
βhI{ENoChange

i,c(z),t = h}+γ′Xi + εi,c(z),t (6)
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The event-time variable EContract
i,t,c(z) = t − τc(z) will be defined for never-treated counties and

zip codes which receive updated maps that do not change flood zone boundaries. The idea
behind this robustness check is that county-year shocks would affect both zip codes with
expanded boundaries and zip codes where boundaries do not change.

Figure 10 plots the βh coefficients of Equation 6. There are no significant changes in
credit scores or log incomes following the remappings. Furthermore, the signs switch, with
average credit scores and log incomes declining after the remappings. This suggests that
unobserved county-year shocks do not drive the earlier results.

Another possible concern is that the results may be driven by unobserved zip code - year
shocks. The results from Section 5 relied on within zip code - year variation, and therefore
differenced out any unobservable zip - year shocks.

Lastly, the recent econometrics literature suggests that staggered difference-in-differences
designs can be biased when treatment effects are heterogeneous by cohort and over time.
The literature proposes a variety of approaches to address these concerns. Here, I consider
the independent effect of the 2012 remappings, which employs a standard difference-in-
differences design comparing remapped counties to never-treated counties. This approach has
the disadvantage that I cannot include year fixed effects. However, the results are consistent
with what I find in my staggered setting, such helps alleviate some of these concerns.

Magnitudes: One may wonder whether the observed reduction loan-to-value ratios is
an over- or under-reaction relative to the true delinquency risk that banks face from floods.
The cross-sectional evidence in Sections 4 and 5 suggests that the reduction in loan-to-value
ratios leads to equal delinquency rates in and out of flood zones. For example, Table 4 shows
that delinquency rates in and out of flood zones are the same even though loan-to-value
ratios in flood zones are lower. While not definitive, Table 7 suggests that the delinquency
rates decline after the remappings, likely due to the reduction in loan-to-value ratios. Taken
together, this suggests that reduced loan-to-value ratios bring lower delinquency rates, and
that the level of adjustments successfully equalizes delinquency rates in and out of flood
zones. Whether this is the optimal level of adjustment depends on assumptions about the
distribution of flood damages, the elasticity of delinquency with respect to loan-to-value
ratios at origination, and the competitive structure of lending markets. Future work will
bring more evidence to bear on the correct modeling assumptions and parameter estimates.
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7 Conclusion

Climate change is likely to intensify flood damage in the years to come. Policymakers are
concerned about what this means for the financial system. Despite the large scale of the
potential shock, there is limited empirical evidence on how flood risk is distributed among
in residential mortgage markets.

This paper shows that lenders manage uninsurable flood risk by reducing loan-to-value
ratios. To establish this result, I first show that lenders do not adjust mortgage terms in
flood zones when they are fully covered by insurance, relying on insurance payments to offset
any property damage from floods. This suggests that banks transfer flood risk exposures
to the government through flood insurance contracts. For any residual uninsured flood risk
exposure, they require lower loan-to-value ratios. Requiring higher down payments, in effect,
shifts some flood risk back to borrowers by increasing their equity positions.

I confirm the cross-sectional results in the time series by showing that loan-to-value ratios
respond to the release of updated flood maps that expand flood zone boundaries. This result
cannot be driven by unobserved amenities since the identification strategy fixes unobserved
location-specific attributes. In turn, these higher required down payments change the com-
position of borrowers towards richer, higher credit quality individuals. This suggests that
the decisions made by lenders have real effects by deterring liquidity constrained borrowers
from flood zones.
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8 Figures and Tables

8.1 Figures

Figure 1: The Spatial Distribution of Flood Risk and Down Payments by County

(a) Share of County in a FEMA Flood Zone (b) Ratio of Down Payments to Property Value

Notes: This figure color-codes counties in Florida based on their FEMA flood zone share and the ratio of
downpayments to property values in 2013. Flood zone share is defined as the number of homes in a county
mapped by FEMA to be a high-risk flood zone divided by the total number of homes in the county. The
underlying data for flood zone share comes from Zillow Ztrax and FEMA flood maps. Data on the ratio
of down payments to property values is calculated as one minus the loan-to-value ratio at origination and
comes from the main estimation sample.
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Figure 2: The Effect of FEMA Flood Zone Classification on Mortgage Characteristics by
Income Ventile

(a) Loan-to-Value Ratios at Origination (b) Interest Rates at Origination

(c) Delinquency

Notes: This figure plots the relationship between mortgage characteristics and log income split by FEMA
flood zone status. Delinquency is a dummy variable indicating whether the mortgage becomes delinquent
for at least 90 days within the first 3 years of origination. To construct these binned scatterplots, the sample
is divided into 20 equal-sized bins based on the ventiles of log income. I then plot the mean of loan-to-value
ratios (Panel A), interest rates (Panel B), and the delinquency dummy variable (Panel C) against the mean
of log income within each bin separately by whether the mortgage is in a FEMA flood zone.
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Figure 3: Distribution of Replacement Costs by FEMA Flood Zone

Notes: This graph plots a histogram of replacement costs by FEMA flood zone status. Replacement costs
are proxied as the product of the property’s building size in square feet and construction costs for Florida,
measured as dollars per square foot. The red vertical line references the $250,000 NFIP flood insurance
coverage limit. Data on a property’s building size comes from tax assessments in Zillow ZTRAX. Data on
construction costs come from the R.S. Means Company.
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Figure 4: Effect of FEMA’s Flood Zone Classification on Mortgage Terms by Replacement
Cost

(a) Loan-to-Value Ratios (Percentage Points) (b) Interest Rates (Percentage Points)

Notes: This figure plots the regression coefficients from Equation 2 in the text, which estimates how
the effect of FEMA flood zone classification on mortgage terms varies by the property’s replacement cost.
Panel A tests Hypothesis 1 from Section 2 and shows the coefficient estimates for loan-to-value ratios at
origination. Panel B tests Hypothesis 2 from Section 2 and shows the coefficient estimates for interest rates
at origination. Replacement costs are calculated as the product of the property’s building size in square feet
and construction costs for Florida, measured as dollars per square foot. Replacement costs are grouped into
categories by increments of $25,000. Each dependent variable is regressed on a dummy variable indicating
that the loan is in a flood zone interacted with a dummy for each replacement cost category. The category
for homes with replacement costs lower than $75,000 is omitted, so all estimates can be interpreted as the
effect of flood zone for that replacement cost category relative to the effect of the omitted category. The
regression includes zip code-year fixed effects and a rich set of control variables which include the borrower’s
FICO credit score, annual income, combined loan-to-value ratio for other liens on the property, property
value, maturity, debt-to-income ratio, and dummy variables which indicate first mortgages, second homes,
low grade mortgages, full document mortgages, jumbo loans, and adjustable rate loans. I also control for
flood insurance take-up rates at the flood zone - zip code - year level. The 95 percent confidence intervals
are based on standard errors which are clustered at the county level.
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Figure 5: Release Year of Updated Flood Maps by County

Notes: FEMA issues updated flood maps for all communities within a county at the same time. This map
shows the year that each county receives an updated flood map for those areas that are included in my
sample as treated counties. I also include as control counties those areas which do not receive any new maps
between 2005-2016 (in gray).
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Figure 6: Dynamic Effects of Updated Flood Maps on Mortgage Terms

(a) Loan-to-Value Ratios (Percentage Points) (b) Interest Rates (Percentage Points)

Notes: This figure reports estimates of the effect of updated FEMA flood maps that expand flood zone
boundaries and tests Hypotheses 1 and 2 from Section 2. The dependent variables are loan-to-value ratios
at origination (Panel A) and interest rates (Panel B). The figures reports the coefficients from estimating
Equation 4 in the text, which is a difference-in-differences regression that allows the effect to vary by year
relative to the release of the updated flood map. Estimates were constructed by regressing each mortgage’s
loan-to-value ratio and interest rate on a series of event-time dummy variables indicating the year relative
to the release of the updated map. Relative year zero is the year that the map was released or indicates
that the county is never treated, meaning it does not receive an updated flood map between 2005-2016. The
dummy for relative year -1 is the omitted category, so all estimates can be interpreted as the effect relative to
the year prior to the updated map. The 95 percent confidence intervals are based on standard errors which
are clustered at the county level. The regression also includes year fixed effects and county fixed effects.
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Figure 7: Dynamic Effects of Updated Flood Maps on Mortgages and Transacted Properties

(a) Log Loan Amount (b) Log Property Value

(c) Building Size (Square Feet)

Notes: This figure reports estimates of the effect of updated flood maps from FEMA that expand flood zone
boundaries. The dependent variables are log loan amounts (Panel A), log property values (Panel B), and
building sizes (Panel C). It reports the coefficients from Equation 4, a difference-in-differences regression that
allows the effect to vary by year relative to the release of the updated flood map. Estimates were constructed
by regressing each of the three dependent variables on a series of event-time dummy variables indicating the
year relative to the release of the updated map. Relative year zero is the year that the map was released
or indicates that the county is never treated, meaning it does not receive an updated flood map between
2005-2016. The dummy for relative year -1 is the omitted category, so all estimates can be interpreted as
the effect relative to the year prior to the updated map. The 95 percent confidence intervals are based on
standard errors which are clustered at the county level. The regression also includes year fixed effects and
county fixed effects.
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Figure 8: Dynamic Effects of Updated Flood Maps on Loan-to-Value Ratios by Credit
Score

(a) Regular Borrowers: FICO < 740 (Percentage
Points) (b) SuperPrime Borrowers: FICO Score ≥ 740

Notes: This figure reports estimates of the effect of updated flood maps from FEMA that expand flood
zone boundaries. The dependent variable is the loan-to-value ratio at origination, and the sample is split by
whether the borrower has a FICO score below 740 points (Panel A) and whether borrowers are superprime-
with FICO scores greater than or equal to 740 points (Panel B). It reports the coefficients from Equation
4, a difference-in-differences regression that allows the effect to vary by year relative to the release of the
updated flood map. Estimates were constructed by regressing the dependent variable on a series of event-
time dummy variables indicating the year relative to the release of the updated map separately for each
sub-sample. Relative year zero is the year that the map was released or indicates that the county is never
treated, meaning it does not receive an updated flood map between 2005-2016. The dummy for relative year
-1 is the omitted category, so all estimates can be interpreted as the effect relative to the year prior to the
updated map. The 95 percent confidence intervals are based on standard errors which are clustered at the
county level. The regression also includes year fixed effects and county fixed effects.
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Figure 9: Dynamic Effects of Updated Flood Maps on Borrower Composition

(a) Log Income (b) FICO Credit Score

Notes: This figure reports estimates of the effect of updated flood maps from FEMA that expand flood
zone boundaries. The dependent variables are the log of the borrower’s annual income (Panel A) and FICO
credit scores (Panel B) at origination. It reports the coefficients from Equation 4, a difference-in-differences
regression that allows the effect to vary by year relative to the release of the updated flood map. Estimates
were constructed by regressing each dependent variable on a series of event-time dummy variables indicating
the year relative to the release of the updated map. Relative year zero is the year that the map was released
or indicates that the county is never treated, meaning it does not receive an updated flood map between
2005-2016. The dummy for relative year -1 is the omitted category, so all estimates can be interpreted as
the effect relative to the year prior to the updated map. The 95 percent confidence intervals are based on
standard errors which are clustered at the county level. The regression also includes year fixed effects and
county fixed effects.
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Figure 10: Dynamic Effects of Updated Flood Maps on Borrower Composition when Flood
Zone Boundaries Do Not Expand

(a) Credit Scores (b) Log Income

Notes: This figure reports estimates of the effect of updated flood maps from FEMA that do not expand flood
zone boundaries. The dependent variables are the log of the borrower’s annual income (Panel A) and FICO
credit scores (Panel B) at origination. It reports the coefficients from Equation 6, a difference-in-differences
regression that allows the effect to vary by year relative to the release of the updated flood map. Estimates
were constructed by regressing each borrower’s FICO credit score (Panel A) and log income (Panel B) on a
series of event-time dummy variables indicating the year relative to the release of the updated map. Relative
year zero is the year that the map was released or indicates that the county is never treated, meaning it
does not receive an updated flood map between 2005-2016. The dummy for relative year -1 is the omitted
category, so all estimates can be interpreted as the effect relative to the year prior to the updated map. The
95 percent confidence intervals are based on standard errors which are clustered at the county level. The
regression also includes year fixed effects and county fixed effects.
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8.2 Tables

Table 1: Merge Diagnostics

Final Sample McDash ZTRAX HMDA
Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev.

Applicant Income ($) 80,865 99,282 87,914 90,788
Loan Ammount ($) 187,255 132,633 193,479 113,661 178,124 108,126 199,422 113,537
Property Value ($) 219,788 188,313 231,097 155,295 216,714 154,802
Maturity (months) 354.7 30.18 351.0 39.14 333.3 85.74
Interest Rate (%) 4.192 0.588 4.172 0.607
Combined LTV (%) 89.69 11.51 88.06 12.19
FICO Credit Score 722.5 55.57 725.2 55.78
DTI Ratio (%) 35.18 14.19 34.74 14.18
LTV Ratio (%) 88.74 13.22 87.14 13.15

Observations 300,530 457,145 683,159 1,128,023

Notes: This table shows summary statistics for the key mortgage characteristics in the final merged dataset
and each of the three input datasets, namely the McDash, Zillow ZTRAX, and Home Mortgage Disclosure
Act (HMDA) data. The ZTRAX, McDash, and HMDA datasets are restricted to purchase mortgages
for single-family homes for Florida from 2010-2016. The data for ZTRAX, McDash, and HMDA are also
winsorized at the 1% level, since there are large outliers in loan amounts, property values, and income which
could not be matched.
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Table 2: Summary Statistics for Mortgage Characteristics

(1) (2) (3)
All NonFloodZone FloodZone

Mean St.Dev. Mean St.Dev. Mean St.Dev.

Credit Score 722.5 55.6 721.3 55.8 727.5 54.3
Applicant Annual Income ($) 80,864 99,282 76,318. 84,924 99,966 143,238
LTV (%) 88.7 13.2 89.3 13.0 86.6 14.1
Interest Rate (%) 4.19 0.59 4.19 0.59 4.20 0.60
Loan Amount ($) 187,255 132,633 177,646 112,257 227,625 191149.5
Property Value ($) 219,787 188,313 205,772 150,695 278,673 291116.6
Maturity (months) 354.7 30.2 354.8 30.0 354.4 31.0
DTI Ratio (%) 35.2 14.2 35.3 14.1 34.8 14.5
Combined LTV (%) 89.7 11.5 90.1 11.4 88.0 11.9
First Mortgage Indicator 100.0 0.26 100.0 0.29 100 0
Second Home Indicator 5.20 22.2 4.93 21.6 6.34 24.4
Low Grade Indicator 2.38 15.2 2.39 15.3 2.34 15.1
FHA or VA Indicator 51.0 50.0 52.6 49.9 44.3 49.7
Full Document Indicator 51.6 50.0 51.7 50.0 51.2 50.0
Jumbo Loan Indicator 2.24 14.8 1.69 12.9 4.55 20.8
Delinquent Indicator 1.44 11.9 1.51 12.2 1.14 10.6
Replacement Cost ($) 237,358 90,388 234,926 87,259 247,574 101,865
Building Size (Square Feet) 1,888.1 710.4 1,869.0 685.5 1,968.1 801.6

Observations 300,530 242,751 57,779

Notes: This table provides summary statistics on mortgage characteristics for the estimation sample and
provides a breakdown by FEMA flood zone status.
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Table 3: Summary Statistics for Flood Insurance Characteristics

All NonFloodZone FloodZone
Mean Sd Mean Sd Mean Sd

Takeup Rate (%) 10.6 10.9 6.65 8.85 25.8 18.4
Claim Probability (%) 0.82 2.21 1.16 2.91 1.53 4.31
Claim ($) 12,618 14,054 13,933 17,428 13,686 15,352
Assessed Building Value ($) 192,025 199,202 195,081 198,447 192,536 218,862

Observations (Zip-Year) 5,598 5,598 5,598

Notes: This table provides summary statistics on flood insurance characteristics for the estimation sample
and provides a breakdown by FEMA flood zone status. The policy-level data from FEMA on flood insurance
is anonymized, but includes identifying information about zip code, flood zone classification, and year in
force. For each zip code - year combination, I calculate overall take up rates, and then calculate take up
rates inside of flood zones and outside of flood zones. To do so, I use Zillow ZTRAX property assessment
data to obtain counts of the number of housing units in and out of flood zones. This table presents the
overall average and standard deviation for those zip code - year level observations.
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Table 4: Effect of Flood Zone on Mortgages with Controls for Income, Credit Score, and
House Prices

OriginalLTV Interest Rate Delinquency
(1) (2) (3)

Panel A: Without Fixed Effects

FloodZone -0.0087∗ 0.0007∗∗∗ -0.0001
(0.0047) (0.0002) (0.0011)

Adjusted R2 0.19 0.09 0.02

Panel B: With Zip Code - Year Fixed Effects

FloodZone -0.0083∗∗∗ 0.0001∗∗∗ -0.0006
(0.0016) (0.0000) (0.0004)

Adjusted R2 0.25 0.45 0.06

Observations 300,530 300,530 300,530

Notes: This table shows the results of a cross-sectional linear regression that tests Hypotheses 1 and 2 from
Section 2 by exploring the relationship between FEMA flood zone status and mortgage characteristics. The
three dependent variables are the mortgage’s loan-to-value ratio, interest rate, and delinquency which is a
dummy variable that indicates whether the mortgage becomes more than 90-days delinquent within the first
three years of origination. FloodZone is a dummy variable which indicates whether the mortgage is located
in a FEMA flood zone when it was originated. Control variables in all six columns include the borrower’s
credit score, income, and property value. Panel A excludes zip code - year fixed effects, and Panel B includes
zip code - year fixed effects. Standard errors are reported in parentheses and are clustered at the county
level. Significance Levels: * (p<0.10), ** (p<0.05), *** (p<0.01)
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Table 5: Effect of Capped Flood Insurance on Loan-to-Value Ratios in Flood Zones

Full Sample Replacement Cost Replacement Cost
within 100K of Cap Above Cap

OriginalLTV OriginalLTV OriginalLTV log(LTV)
(1) (2) (3) (4)

CapBinds 0.0038∗∗∗ 0.0053∗∗∗ 0.0031∗∗∗
(0.0012) (0.0012) (0.0009)

FloodZone -0.0021 -0.0009 -0.0023 -0.0116∗∗∗
(0.0037) (0.0020) (0.0023) (0.0032)

CapBinds -0.0095∗∗∗ -0.0081∗∗∗ -0.0045∗∗∗
× FloodZone (0.0019) (0.0019) (0.0014)

log(InsGap) 0.0070∗∗∗
(0.0010)

FloodZone -0.0055∗∗∗
× log(InsGap) (0.0013)

Controls Y Y Y Y
Zip-Year FE N Y Y Y
Adjusted R2 0.45 0.48 0.47 0.43
Observations 300,530 300,530 234,768 104,483

Notes: This table tests Hypothesis 1 from Section 2 by exploring the effect of flood insurance coverage
limits on the relationship between FEMA flood zone status and loan-to-value ratios (LTVs). The first three
columns report the coefficients estimating Equation 1 for LTVs and Column (4) reports the coefficients
estimating Equation 3 for log LTVs as the dependent variable. FloodZone is a dummy variable for whether
the mortgage is located in a FEMA flood zone when it was originated. CapBinds is a dummy variable
for whether the home’s replacement cost exceeds the flood insurance coverage limit of $250,000. InsGap

is defined by dividing the excess replacement cost above $250,000 by the property value at origination.
Columns (1)-(2) include the full sample. Column (3) restricts to homes with replacement costs that range
from $150,000 and $250,000. Column (4) restricts the sample to homes with replacement costs that exceed
$250,000. The regression has zip code-year fixed effects where indicated. All specifications control for flood
insurance take-up rates at the floodzone-zip code-year level as well as loan-level variables, which include the
borrower’s FICO credit score, annual income, combined loan-to-value ratio for other liens on the property,
property value, maturity, debt-to-income ratio, and dummy variables which indicate first mortgages, second
homes, low grade mortgages, full document mortgages, jumbo loans, and adjustable rate loans. Standard
errors are reported in parentheses and are clustered at the county level. Significance Levels: * (p<0.10), **
(p<0.05), *** (p<0.01).
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Table 6: Effect of Capped Flood Insurance on Rates and Delinquencies in Flood Zones

Full Sample Replacement Cost
Within 100K of Cap

InterestRate Delinquency InterestRate Delinquency
(1) (2) (3) (4)

CapBinds -0.0001∗∗ -0.0018∗∗∗ -0.0001∗ -0.0014∗∗
(0.0000) (0.0006) (0.0000) (0.0007)

FloodZone 0.0001 -0.0006 0.0001 -0.0004
(0.0001) (0.0008) (0.0001) (0.0009)

CapBinds 0.0000 -0.0005 -0.0000 -0.0007
× FloodZone (0.0000) (0.0011) (0.0000) (0.0013)

Zip-Year FE Y Y Y Y
Controls Y Y Y Y
Observations 300,530 300,530 234,768 234,768
Adjusted R2 0.58 0.08 0.57 0.09

Notes: This table shows the results of a cross-sectional linear regression that explores the effect of flood
insurance coverage limits on the relationship between FEMA flood zone classification and mortgages. The
two dependent variables are the mortgage’s interest rate and a dummy variable which indicates whether the
mortgage becomes more than 90-days delinquent within the first three years of origination. The results on
interest rates in Columns (1) and (3) test Hypothesis 2 in Section 2. FloodZone is a dummy variable which
indicates whether the mortgage is located in a FEMA flood zone when it was originated. CapBinds is a
dummy variable which indicates whether the home’s replacement cost exceeds the flood insurance coverage
limit of $250,0000. All specifications include zip code-year fixed effects, a control for flood insurance take-
up rates at the flood zone-zip code-year level, and loan-level controls which include the borrower’s FICO
credit score, annual income, combined loan-to-value ratio for other liens on the property, property value,
maturity, debt-to-income ratio, and dummy variables which indicate first mortgages, second homes, low
grade mortgages, full document mortgages, jumbo loans, and adjustable rate loans. Standard errors are
reported in parentheses and are clustered at the county level. Significance Levels: * (p<0.10), ** (p<0.05),
*** (p<0.01).
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Table 7: Pooled Effect of Updated Maps on Mortgage Terms

(1) (2) (3)
Delinquency DTI Ratio Maturity

Post -0.0109∗ -0.0015 -0.0843
(0.0059) (0.0037) (0.4520)

County FE Y Y Y
Year FE Y Y Y
Adjusted R2 0.030 0.048 0.004
Observations 84,968 28,907 84,968

Notes: This table reports estimates of the effect of updated flood maps that do expand flood zone boundaries
on delinquencies, debt-to-income ratios, and maturity. It reports the coefficients from the difference-in-
differences regression in Equation 5. Delinquency is a dummy variable that indicates whether a mortgage
becomes more than 90-days delinquent within the first three of origination. DTIRatio is the mortgage’s
debt-to-income ratio at origination. Maturity is the mortgage’s maturity at origination, measured in months.
Post is a dummy variable that indicates whether that mortgage is originated on or after the introduction of
the updated flood map. Post equals zero in the pre-remapping period and for never-treated counties in the
control group that do not receive an update flood map between 2005 - 2016. The regression also includes
year fixed effects and county fixed effects. Standard errors are clustered at the county level. Significance
Levels: * (p<0.10), ** (p<0.05), *** (p<0.01).
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A Data Appendix

To construct the final dataset, I first processed historical FEMA flood maps, and then I
geo-located the BlackKnight McDash mortgage dataset so I could overlay the current and
historical flood maps. Finally I geo-located the Home Mortgage Disclosure dataset so I could
include borrower’s annual income at origination. In this section, I outline the details for each
step of the merging process.

A.1 Processing Floodmaps

FEMA Remapping Dates: The first step of the process was to obtain the history of
map revision dates for each county in Florida. For each county in Florida, I downloaded
the current and historical Flood Insurance Studies from Fema Flood Map Service Center,
a section of FEMA’s website. In recent decades, when FEMA chooses to update flood
maps, it conducts flood insurance studies for all communities in a given county. The final
study is published in a technical report on the same day as the finalized flood maps. Each
Flood Insurance Study includes a table "titled Community Map History", which includes
the community name, date of the first effective flood map, and subsequent revisions to flood
maps at the commmunity level. I supplement the data in this table with the dates of all
Flood Insurance Studies, since all the communities in a county receive new maps at the same
time and sometimes these tables do not include more recent studies. After these steps, I
obtained a data set with the history of flood map revision dates for each county.

Digitizing Flood Maps: The next step of the process is to obtain digitized current
and historical flood maps. As explained in Section 4, FEMA’s flood maps delineate the
boundaries of high and moderate flood risk zones. The highest risk zones are called “special
flood hazard areas (SHFAs)”, and are denoted as either Zone A or Zone V on maps. For
my estimation, I needed flood maps which would be valid for each county throughout my
sample period, so that I could correctly define an indicator for a mortgage’s SFHA status at
origination. Digitized maps refer to georeferenced shapefiles or geodatabases Some current
and historic flood maps are available directly from FEMA’s Flood Map Service Center.
I also downloaded additional FEMA flood maps from online geospatial databases at the
University of Texas, Princeton University, Harvard University, Berkeley, and the University
of Florida. Specifically, University of Texas, Princeton, and Berkeley’s geospatial libraries
include snapshots of the “Q3 Flood Data”, which digized FEMA flood maps from 1996 for
a select number of counties in Florida. Harvard’s Geospatial Library include a snapshot
of flood maps for Florida from 2011. The University of Florida Geographic Data Library
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retained digitzed flood maps for a handful of counties in Florida between 2001 and 2009.
While some were available for download online, others were shared with me from the library’s
archives. I then compared my map dates with the list of map revisions to determine which
revision date would be reflected by the version of the map I had.

For Levy, Calhoun and Clay counties, digitized flood maps that would be valid at the
beginning of my sample were not available from FEMA or in the university repositories. I
downloaded PDFs of the paper maps for each community from FEMA’s map service center,
and digitized the FIRMS for these counties myself using ArcGIS Pro.

After this step, I had shapefiles for each county in Florida which would be valid through-
out my sample period of 2010-2016 and a list of each county’s flood map revision dates.

A.2 ZTRAX-McDash Merge

The next step is to geo-locate the BlackKnight McDash mortgage data by merging it with Zil-
low ZTRAX. I first limit both the McDash and ZTRAX data to purchase mortgages. I limit
to purchase mortgages because ZTRAX data coverage of refinances is less reliable, and be-
cause it is much more difficult to have a good metric of house value for refinances. In McDash,
the transaction is a purchase mortgage for single family homes when the variable Purpose-
OfLoanId equals one and when the variable PropertyTypeCode equals one. In ZTRAX, I
mortgages transactions by keep transactions with nonmissing LoanAmounts that are greater
than zero, by dropping transactions that are cash sales (SalesPriceAmountStndCode="CS"),
keeping deed transfers only (DataClass= "D" or "H"), and dropping arms-length transactions
(SalesPriceAmount = 0 ). I drop refinances and other types of mortgage transactions (defined
as LoanTypeStndCode equals "RE", or LoanTypeSt = "AC", "CT","CS", "CC", "CL", "DP",
"FO", "FE", "HE", "LC","MD","CM","RM","RD","SM","SE","SL","TR", "PM", or "AS"). In
Zillow, single family homes are defined as transactions where PropertyUseStndCode equals
"SR", "RR", or is missing.

After limiting both datasets to purchase mortgages, I round loan amounts to the nearest
$10,000, and then I merge both datasets on 3-digit zip codes, year of closing, and rounded
loan amount. This gives me an m:m match, where each transaction in both datasets are
linked to multiple transactions in the other dataset. I then use the following algorithm to
choose which match to keep.

First, if the five-digit zip code is available in McDash, then I keep the matches where the
zip code is an exact match; otherwise, I keep the three digit match.

Next, I keep the matches with the closest loan amount, house price, and maturity. To
do so, I first calculate a distance metric by taking the sum of the squared difference between
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the McDash and ZTRAX dataset for each variable. Next, I rank each match based on the
distance metric for each ZTRAX loan and for each McDash loan. Transactions which are
ranked first for both datasets are considered a match. These are then removed from the
dataset, and I then redo this step for the remaining unmatched loans. I iterate this process
seven times.

Lastly, I remove any matches where the closest house price exceeds $10K or there is more
than a 12 month difference in maturity. Because ZTRAX includes a parcel’s latitude and
longitude, this merge leads to a dataset where mortgages in McDash are geolocated. I am
able to merge 83 % of transactions in McDash using this algorithm.

Having obtained the latitude and longitude for each mortgage in McDash, I use the stata
function geoinpoly to obtain each mortgage’s flood zone classification under all available
maps of the county. The final flood zone were take the classification for which ever map
would be valid at the time the mortgage was originated.

A.3 ZTRAX-HMDA Merge

For merging the HMDA data to the ZTRAX deeds data, I do a fuzzy merge via the zip code
of the house, origination year, loan amount, and lender name. I followed closely the method
outlined in Bayer et al. (2016) and Billings (2019), with some minor modifications. I first
limit both datasets to purchase mortgages for single family homes, which in HMDA can be
obtained by limiting to property types that equal one and loan purposes equal to one. For
ZTRAX, I obtain both the 2000 and 2010 census tracts for the loan by overlaying current
and historical census shapefiles from the census website. HMDA uses the 2000 census tracts
for the 2010 and 2011 LAR files, and uses the 2010 census tracts for the years thereafter.

I then merge the two datasets on the basis of census tract, rounded loan amount, and
origination year. The transactions with unique matches are treated as final. For transactions
with multiple matches, I keep matches which have the closest lender name and loan amount.
I use the stata “matchit” function to develop a similarity score of lender names.

Using this algorithm, I am able to merge 40% of the data in HMDA.

A.4 Validity of ZTRAX data

I use the ZTRAX assessment data to obtain the share of each zip code in a SHFA under
each vintage of the county’s floodmap. I ensure that the data is reliable by comparing
overall numbers to housing unit counts from the American Community Survey. In general,
the number of housing units in ZTRAX is pretty close to the American Community Survey
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data at both the county-year level and at the zip-year level. At the county level, there is a
99.6% correlation between the two datasets. At the zipcode level, there is a 95% correlation
between the two datasets.
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B Appendix Tables and Figures

B.1 Figures

Figure B.1: The Effect of Property Value on Mortgage Characteristics by Flood Zone

(a) Loan-to-Value Ratios (b) Interest Rates

(c) Delinquencies

Notes: This figure plots the relationship between mortgage characteristics and log property values split by
FEMA flood zone classifications for the main sample. Delinquency is defined as a dummy variable indicating
whether the mortgage becomes delinquent for at least 90 days within the first 3 years of origination. To
construct these binned scatterplots, the sample is divided into 20 equal-sized bins based on the ventiles of
log property values. I then plot the mean of loan-to-value ratios (Panel A), interest rates (Panel B), and the
delinquency dummy variable (Panel C) against the mean of log property value within each bin separately
by whether the mortgage is in a FEMA flood zone. Since delinquency is an indicator variable, the mean can
be interpreted as the share of mortgages that become delinquent for at least 90 days within the first 3 years
of origination.
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Figure B.2: The Effect of FICO Credit Scores on Mortgage Characteristics by Flood Zone

(a) Loan-to-Value Ratios (b) Interest Rates

(c) Delinquencies

Notes: This figure plots the relationship between mortgage characteristics and FICO credit scores split by
FEMA flood zone classifications for the main sample. Delinquency is defined as a dummy variable indicating
whether the mortgage becomes delinquent for at least 90 days within the first three years of origination.
To construct these binned scatterplots, the sample is divided into 20 equal-sized bins based on the ventiles
of credit scores. I then plot the mean of loan-to-value ratios (Panel A), interest rates (Panel B), and the
delinquency dummy variable (Panel C) against the mean of credit scores within each bin separately by
whether the mortgage is in a FEMA flood zone. Since delinquency is an indicator variable, the mean can be
interpreted as the share of mortgages that become delinquent for at least 90 days within the first 3 years of
origination.
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Figure B.3: Distribution of FEMA Flood Insurance Claims Paid out By Assessed Building
Value

Notes: This graph plots the distribution of FEMA flood insurance claims paid out across for each category
of building value as assessed by FEMA. To construct this chart, I split FEMA building assessment values
into 15 bins using increments of $50,000. For each building value bin, I then calculate the average claim,
median claim, and various percentiles of claims. The sample covers the full history of flood insurance claims
for Florida spanning 2008-2018.
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Figure B.4: Effect of Flood Zone Status on Delinquency by Replacement Cost

Notes: This figure plots the regression coefficients from estimating Equation 2 in the text, which allows
the effect of being in a FEMA flood zone on delinquency to vary by the property’s estimated replacement
cost. The dependent variable, Delinquency, is a dummy variable that indicates whether a mortgage becomes
delinquent for at least 90 days within the first three years of origination. Replacement costs are proxied as the
product of the property’s building size in square feet and construction costs for Florida, measured as dollars
per square foot. Replacement costs are grouped into categories by increments of $25,000. Delinquency is
regressed on a dummy variable indicating that the loan is in a flood zone interacted with a dummy for each
replacement cost category. The category for homes with replacement costs lower than $75,000 is omitted,
so all estimates can be interpreted as the effect of flood zone for that replacement cost category relative
to the effect of the omitted category. The regression includes zip code-year fixed effects and a rich set of
control variables which include the borrower’s FICO credit score, annual income, combined loan-to-value
ratio for other liens on the property, property value, maturity, debt-to-income ratio, and dummy variables
which indicate first mortgages, second homes, low grade mortgages, full document mortgages, jumbo loans,
and adjustable rate loans. I also control for flood insurance take-up rates at the flood zone - zip code - year
level. The 95 percent confidence intervals are based on standard errors which are clustered at the county
level.

63



Figure B.5: Effect of Flood Zone on Loan-to-Value Ratio by Purchaser Type

Notes: This figure explores how the effect of flood zone status on loan-to-value ratios varies by who
purchases the mortgage in the year it was originated. The figure reports the βk coefficients from estimating
the following specification:

LTVit = αzt +
∑

k

βk(FloodZoneit × PurchaserTypek,it) + γ′Xit + +εit

FloodZone is a dummy variable for whether the mortgage is located in a FEMA flood zone when it was
originated. PurchaserTypek is an dummy variable that indicates whether the originating bank sold the
mortgage to an institution of type k within the calendar year. Zip code-year fixed effects are denoted by αzt.
Control variables in vector Xit include the borrower’s FICO credit score, annual income, combined loan-
to-value ratio for other liens on the property, property value, maturity, debt-to-income ratio, and dummy
variables which indicate first mortgages, second homes, low grade mortgages, full document mortgages,
jumbo loans, and adjustable rate loans. I also control for flood insurance take-up rates at the flood zone -
zip code - year level. The 95 percent confidence intervals are based on standard errors which are clustered
at the county level.
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Figure B.6: Dynamic Effects of Updated Flood Maps on Loan-to-Value Ratios with Dif-
ferent Loan-Level Controls

(a) Controls: DTI Ratio and Credit Scores
(b) Controls: DTI Ratio, Credit Scores, and In-
terest Rates

Notes: This figure reports estimates of the effect of updated flood maps that expand flood zone boundaries on
loan-to-value ratios using two sets of loan-level controls. Panel (A) includes the mortgage’s debt-to-income
ratio and credit scores as loan-level controls. Panel (V) includes debt-to-income ratio, credit scores, and
interest rates as loan-level controls. It reports the coefficients from Equation 4, a difference-in-differences
regression that allows the effect to vary by year relative to the release of the updated flood map. Estimates
were constructed by regressing each borrower’s loan-to-value ratio on a series of event-time dummy variables
indicating the year relative to the release of the updated map. Relative year zero is the year that the map
was released or indicates that the county is never treated, meaning it does not receive an updated flood
map between 2005-2016. The dummy for relative year -1 is the omitted category, so all estimates can be
interpreted as the effect relative to the year prior to the updated map. The 95 percent confidence intervals
are based on standard errors which are clustered at the county level. The regression also includes year fixed
effects and county fixed effects.
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B.2 Tables

Table B.1: Robustness: The effect of flood zone on loan-to-value ratios by whether the
flood insurance cap binds using alternate measures

OriginalLTV OriginalLTV
(1) (2)

HPriceGt250K -0.0041
(0.0032)

FloodZone -0.0017 -0.0021
(0.0019) (0.0018)

HPriceGt250K -0.0066∗∗∗
× FloodZone (0.0018)

StructValGt250K -0.0086∗
(0.0033)

StructValGt250K -0.0068∗∗∗
× FloodZone (0.0019)
Adjusted R2 0.48 0.48
Zip-Year FE Y Y
Controls Y Y
Observations 300,530 300,530

Notes: This table shows the results of a cross-sectional linear regression that explores the effect of flood
insurance coverage limits on the relationship between FEMA flood zone classification and mortgages. The
dependent variables is the mortgage’s loan-to-value ratio (LTV) at origination. FloodZone is a dummy
variable for whether the mortgage is located in a FEMA flood zone when it was originated. StructV alGt250K
is a dummy variable for whether the home’s assessed structure value exceeds the flood insurance coverage
limit of $250,0000. To construct this variable, I subtract assessments of land values from assessments of total
property value. HPriceGt250K is a dummy variable for whether the house price at origination exceeds the
flood insurance coverage limit of $250,000. All specifications include zip code-year fixed effects, a control for
flood insurance take-up rates at the flood zone-zip code-year level, and loan-level controls which include the
borrower’s FICO credit score, annual income, combined loan-to-value ratio for other liens on the property,
property value, maturity, debt-to-income ratio, and dummy variables which indicate first mortgages, second
homes, low grade mortgages, full document mortgages, jumbo loans, and adjustable rate loans. Standard
errors are reported in parentheses and are clustered at the county level. Significance Levels: * (p<0.10), **
(p<0.05), *** (p<0.01).
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Table B.2: Effect of Capped Flood Insurance on Loan-to-Value Ratios in Flood Zones by
Loan Purchaser Type

(1) (2)
OriginalLTV OriginalLTV

CapBinds 0.0100∗∗∗ 0.0100∗∗∗
(0.0023) (0.0016)

FloodZone 0.0013 -0.0039
(0.0034) (0.0036)

CapBinds × -0.0068∗∗ -0.0043
FloodZone (0.0030) (0.0031)
Adjusted R2 0.46 0.36
FE Zip-Year Zip-Year
Controls Y Y
PurchaserType OriginatingBank GSEs
Observations 44,261 68,604

Notes: This table explores the how effect of flood insurance coverage limits on the relationship between
FEMA flood zone classification and loan-to-value ratios varies by whether the loan is sold or retained on the
bank’s balance sheet. The dependent variable is the loan-to-value ratio (LTV) at origination. FloodZone
is a dummy variable for whether the mortgage is located in a FEMA flood zone when it was originated.
CapBinds is a dummy variable for whether the home’s replacement cost exceeds the flood insurance coverage
limit of $250,0000. Column (1) restricts the sample to loans which are not sold at all, or sold to an affiliate of
the originating bank in the same calendar year as origination. This is constructed using the “purchaser type”
variable in HMDA. Column (2) restricts the sample to loans which are sold to the government-sponsored
enterprises (GSEs) Fannie Mae or Freddie Mac in the same calendar year as origination. All specifications
include zip code-year fixed effects, a control for flood insurance take-up rates at the flood zone-zip code-year
level, and loan-level controls which include the borrower’s FICO credit score, annual income, combined loan-
to-value ratio for other liens on the property, property value, maturity, debt-to-income ratio, and dummy
variables which indicate first mortgages, second homes, low grade mortgages, full document mortgages,
jumbo loans, and adjustable rate loans. Standard errors are reported in parentheses and are clustered at the
county level. Significance Levels: * (p<0.10), ** (p<0.05), *** (p<0.01).

67



Table B.3: Effect of Updated FEMA Flood Maps on NFIP Flood Insurance Takeup Rates

(1) (2)
∆TakeupRatesz ∆LapseRatesz

∆FloodZoneSharez 0.269∗∗∗ -0.274∗∗∗
(0.0173) (0.0176)

Constant -0.0231∗∗ -0.0155∗∗
(0.0093) (0.0056)

Observations 382 382
Adjusted R2 0.1965 0.2954

Notes: This table shows the results of a cross-sectional linear regression exploring the relationship between the
change in flood insurance take-up rates (∆TakeupRatesz) and the change in the number of homes mapped
in a flood zone following the issuance of an updated flood map (∆FloodZoneSharez). Flood insurance
take-up rates are defined as the number of NFIP flood insurance policies divided by the total number of
homes according to the Zillow ZTRAX. Flood zone shares are defined as the number of homes mapped in
a flood zone under the FEMA valid flood map divided by the total number of homes according to Zillow
ZTRAX. I construct the dependent and independent variables as follows. I first construct the flood insurance
take-up rate and share of a zip code in a flood zone at the zipcode-year level. I then take the average across
years within each zip code to obtain the average in the pre-remapping period and the average in the and
post-remapping period for each zipcode. Standard errors are reported in parentheses and are clustered at
the county level. Significance levels 10%, 5%, and 1% are denoted by *, **, and ***, respectively.
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C Model Appendix

In this section, I adapt a Holmstrolm and Tirole (1998) model to illustrate this intuition
behind the hypotheses in Section 2. This is a special example of a larger class of models based
on Stiglitz and Weiss (1981) about credit rationing in the presence of imperfect information.
In this setup, the key friction in the model is moral hazard from strategic default. I first
consider the case where there is no insurance in Section C.1, and then introduced capped
flood insurance in the extension Section C.2.

C.1 Baseline Case: No Insurance

Setup: I consider a static, two-period, partial equilibrium model with three ingredients:
household strategic default, costs of financial distress, and endogenous loan sizes and interest
rates. The model abstracts from flood insurance; Appendix C.2 considers an extension of
the the model with incomplete flood insurance.

In the first period (t=1), a risk-neutral borrower with linear utility purchases a home
worth P0 using a mortgage. The borrower borrows L from the risk-neutral bank, paying a
downpayment of P0 − L from her own income Y . The borrower promises to pay the lender
the balance B in the second period (t=2). The fraction B−L

L
represents the interest rate on

the loan.
Between the first and second period, the household may experience a flood, which occurs

with probability q. The flood causes property damage that changes the value of the home
from P0 to P̃ , which is defined over the support [P , P0] and follows some distribution F , and
density f . With probability 1− q there is no flood, and the house price remains P0.

In the second period, if there is a flood, the household can choose whether to default or
repay the loan. If the household chooses to default, the bank receives the flooded home, and
the household incurs some utility cost of default C > 0. This parameter captures the harm
to the borrower’s credit rating, the transaction costs of default, and any personal moral or
psychological dislike of default. If the household repays, the household keeps the flooded
home but pays B to the lender. I assume that if there is no flood, the value of the home
stays at P0 and the household always repays.

To allow for gains from trade, I assume the lender is more patient than the borrower,
meaning that the lender’s discount rate η exceeds the borrower’s discount rate δ. Both
discount rates are assumed to be positive and less than 1. For simplicity, the price of the
home P0, the household’s income Y , and the costs of financial distress C are assumed to be
exogenous to flood risk q.
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Default Rule: After a flood, households will strategically default when their payoffs
from repaying the loan are less than their utility cost of default, that is when P̃ −B < −C.
The household’s expected utility is given by

U(L,B) = Y − (P0 − L)︸ ︷︷ ︸
downpayment

+ δq
∫ B−C

P
(−C)dF︸ ︷︷ ︸

flood: default

+ δq
∫ P0

B−C
(P −B)dF︸ ︷︷ ︸

flood: no default

+ δ(1− q)(P0 −B)︸ ︷︷ ︸
no flood

(7)

The lender’s expected profits are given by

Π(L,B) = −L+ ηq
∫ B−C

P
PdF + ηq

∫ P0

B−C
BdF + η(1− q)(B) (8)

With perfectly competitive lending markets, households will maximize their expected
utility U(L,B) subject to the lender’s zero profit constraint Π(L,B) = 0. The optimal loan
repayment B is implicitly defined by the following first order condition:

(η − δ)(1− q)︸ ︷︷ ︸
↑repayment when there is no flood

+ (n− δ)q
∫ P0

B−C
dF︸ ︷︷ ︸

↑repayment from non-defaulters in a flood

− ηqCf(B − C)︸ ︷︷ ︸
↑Default

= 0 (9)

The first order condition highlights the key tradeoff in the model. An increase in the repay-
ment amount B leads to increased payment to the bank from non-defaulters, but at the cost
of also increasing the probability of strategic default at the margin.

We can now consider how the optimal loan size (L) and repayment amount (B) change
with flood risk q.

Proposition 1 (Credit Rationing): An increase in the probability of a flood (q) leads
to a lower equilibrium repayment balance B and a lower loan amount L.

Intuition: When the probability of a flood increases, banks lower the repayment amount
B to lower the mass of borrowers that strategically default. However, doing so means they
also earn less from non-defaulters. Therefore, they must also lower the loan size L in the
first period to satisfy their zero profit constraint. Below, I derive the expressions for these
two comparative statics (∂L/∂q and ∂B/∂q) and discuss the technical conditions for both
expressions to be negatively signed. In the above, property values P0 are fixed, so lowering
L is equivalent to lowering the loan-to-value ratio L/P0.

Proof. In the model, I make two assumptions to ensure the model has an interior
solution. First, I assume the lender’s profit function increases in loan repayment, that is
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∂Π/∂B > 0. That is,

ηq(−C)f(B − C) + ηq
∫ P0

B−C
dF + η(1− q) > 0 (10)

Secondly, for the first order condition to represent a maximum, I assume that the second
order condition holds. That is,

−(η − δ)qf(B − C)− ηqCf ′(B − C) < 0 (11)

Applying the implicit function theorem to the FOC in Equation 9 yields that ∂B/∂q < 0:

∂B

∂q
= − −(η − δ)F (B − C)− ηCf(B − C)
−(η − δ)qf(B − C)− ηqCf ′(B − C)

The denominator is negative by the assumption about the second order condition. The
numerator is negative because probability distributions and densities are positive, η > δ > 0,
and because C > 0.

Implicitly differentiating the zero profit condition with respect to q yields that ∂L/∂q < 0:

∂L

∂q
= η

∫ B−C

P
(P −B)dF︸ ︷︷ ︸
<0

+ ∂B

∂q︸︷︷︸
<0

[
η(1− q) + ηq

∫ P0

B−C
dF − ηqCf(B − C)

]
︸ ︷︷ ︸

>0

The term in brackets is equivalent to Equation 10 and is therefore positive by assumption.

Proposition 2 (Interest Rates): An increase in the probability of a flood (q) leads
to a higher equilibrium interest rate r, because loan amounts L decrease by more than the
reduction in the repayment balance B.

Proof. In light of Proposition 1, to prove that interest rates increase we must show that
∂L/∂q < ∂B/∂q. Since 1 + r = B

L
, this tells us that loan sizes decrease by more than the

reduction in repayment balances.
From earlier, we obtain the relation between the two partial derivatives by implicitly

differentiating the zero profit condition with respect to q.

∂L

∂q
= η

∫ B−C

P
(P −B)dF︸ ︷︷ ︸

Z

+∂B
∂q

[
η(1− q) + ηq

∫ P0

B−C
dF − ηqCf(B − C)

]
︸ ︷︷ ︸

Y

(12)
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Let us refer to each term in the expression using the following variables:

Y :=
[
η(1− q) + ηq

∫ P0

B−C
dF − ηqCf(B − C)

]

Z := η
∫ B−C

P
(P −B)dF

∂L

∂q
= Z + ∂B

∂q
Y

Z represents the net expected gain to the lender when the borrower defaults. This is the mean
value of collateral in default less what the lost repayment B, weighted by the probability of
default. Y represents the probability of repayment minus what lenders lose from increased
defaults on the margin. We first show that Y < 1

Y =
[
η(1− q) + ηq

∫ P0

B−C
dF − ηqCf(B − C)

]
< η(1− q) + ηq

∫ P0

B−C
dF < η(1− q) + ηq = η < 1

We thus know that ∂L
∂q
< ∂B

∂q
if the following inequality holds:

Z <
∂B

∂q
(1− Y ) (13)

Intuitively, this condition requires that the lender’s expected losses in default exceed the
change in loan repayment.

C.2 Model Extension with Capped Flood Insurance

In this section, I extend the model by assuming the borrower has access to flood insurance.
Consistent with the institutional details described in Section 3, flood insurance coverage is
mandatory and capped at an exogenous amount. Insurance choices are exogenous. Now, if
the household chooses to default after a flood, the bank receives the flooded home and the
insurance payment. If the household chooses to repay after a flood, the household keeps the
flooded home and the insurance payment. Insurance contract I = min[P0 − P̃ , Ī], that is
insurance pays out the realized flood damage P0 − P̃ up to some cap Ī. Insurance costs a
premium X, which is some function of the distribution of flood risk and the insurance cap:
X(q, P̃ ; Ī , P0). I do not make any assumptions about whether insurance is priced actuarially
correctly or not.

The household will optimally choose to default when her payoff from repaying the loan
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is less than her cost of default:

P̃ + I −B < −C (14)

Given the structure of the insurance contract, we have two sub-cases:

• If P0 − P < Ī, – then the insurance constraint never binds

• If P0 − P > Ī – then the insurance constraint may bind

The quantity P0 − P can be thought of as the replacement cost of the house when, in the
worst case, the flood creates a total loss for the house. In the first case, insurance payments
can cover even a total loss of the house. In the second case, for high enough levels of flood
damage, insurance payments will not be enough to offset property damage.

Case 1: Insurance Constraint Never Binds: In this case, we know that every dollar
of flood damage is completely offset by an insurance payment, and thus the household always
repays the loan. It reduces to the case where the household is not exposed to flood risk at
all.

P0 − P̃ ≤ P0 − P < Ī

=⇒ I = P0 − P ∀P̃

Because the household always repays the loan, her payoffs will always be P0 − B in every
state. The household’s problem is now

max
L,B

Y − (P0 − L) + δ(P0 −B)− q
∫ P0

P
(P0 − P )dF (P )

s.t.− L+ ηB

We obtain the corner solution:

B∗F I = P0 + C (15)

L∗F I = η(P0 + C) (16)

Case 2: Insurance Constraint May Bind: Now we know that high levels of damage
will not be offset by insurance. In this case, the household will only default when P̃+ Ī−B <

−C. There may be some regions where flood damage exceeds the insurance payment, but
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the household still chooses to repay the loan (when P̃ + Ī − B ≥ −C). Given this default
rule, we re-write the borrower’s expected utility as:

UCI(L,B) =Y − (P0 − L) + δq
∫ B−C−Ī

P
(−C)dF + δq

∫ P0−Ī

B−C−Ī
(P + Ī −B)dF

+ δq
∫ P0

P0−Ī
(P0 −B)dF + δ(1− q)(P0 −B)

− q
∫ P0−Ī

P
ĪdF − q

∫ P0

P0−Ī
(P0 − P )dF

The bank’s expected profits are thus:

ΠCI(L,B) = −L+ ηq
∫ B−C−Ī

P
(P + Ī)dF + ηq

∫ P0

B−C−Ī
BdF + η(1− q)B

Taking first order conditions, the optimal loan repayment B is implicitly defined by the
following equation:

(n− δ)q
∫ P0

B−C−Ī
dF (P )︸ ︷︷ ︸

↑repayment from non-defaulters,holding constant default

− ηqCf(B − C − Ī)︸ ︷︷ ︸
↑B =⇒ ↑Default

+ (η − δ)(1− q)︸ ︷︷ ︸
↑repayment in the no flood state

= 0

We assume that the second order condition holds, which is sufficient for the above to be
a maximum.

−(η − δ)qf(B − C − Ī)− ηqCf ′(B − C − Ī) < 0

Proposition 3: An increase in the probability of a flood (q) will only lead to a lower
equilibrium loan size L when the insurance cap binds, that is when P0 − P > Ī.

Proof. The loan size LF I = η(P0 + C) when the insurance cap does not bind, meaning
that loan sizes are independent of q in that case.

When the insurance cap binds, it can be shown that loan sizes LCI will decrease with q.
First, applying the implicit function theorem on the FOC obtains:

∂B

∂q
= −

−(η − δ)
∫ B−C−Ī

P dF − ηCf(B − C − Ī)
−(η − δ)qf(B − C − Ī)− ηqCf ′(B − C − Ī)

< 0

The numerator is negative because probability distributions and the parameters are positively
signed. The denominator is negative by the assumption about the second order condition.
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From the zero profit condition, we obtain:

∂L

∂q
= η

∫ B−C−Ī

P
(P + Ī −B)dF + ηq(−C)f(B − C − Ī)∂B

∂q
+ η(1− q)∂B

∂q
+ ηq

∂B

∂q

∫ P0

B−C−Ī
dF

(17)

= η
∫ B−C−Ī

P
(P + Ī −B)dF︸ ︷︷ ︸

<0

+ η
∂B

∂q︸ ︷︷ ︸
<0

[
(1− q) + q

∫ P0

B−C−Ī
dF − qCf(B − C − Ī)

]
︸ ︷︷ ︸

>0

(18)

The term in brackets is positive and implied by the FOC.
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